Environmental hazard quantification toolkit based on modular numerical simulations
Morgan Tranter
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Svenja Steding
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Christopher Otto
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Konstantina Pyrgaki
Centre for Research and Technology, Hellas (CERTH), 52 Egialias, 15125, Marousi, Greece
Mansour Hedayatzadeh
University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
Vasilis Sarhosis
University of Leeds, Woodhouse Lane, LS2 9JT Leeds, United Kingdom
Nikolaos Koukouzas
Centre for Research and Technology, Hellas (CERTH), 52 Egialias, 15125, Marousi, Greece
Georgios Louloudis
Public Power Corporation of Greece, 104 32 Athens, Greece
Christos Roumpos
Public Power Corporation of Greece, 104 32 Athens, Greece
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Related authors
Christopher Otto, Svenja Steding, Morgan Tranter, Torsten Gorka, Mária Hámor-Vidó, Wioleta Basa, Krzysztof Kapusta, István Kalmár, and Thomas Kempka
Adv. Geosci., 58, 55–66, https://doi.org/10.5194/adgeo-58-55-2022, https://doi.org/10.5194/adgeo-58-55-2022, 2022
Short summary
Short summary
For a potential utilisation of coal resources located in Hungary, an assessment of groundwater pollution resulting from a water-borne contaminant pool has been undertaken. A sensitivity analysis was carried out by means of numerical simulations. Simulation results demonstrate that fluid flow via the regional faults is the main driver for a potential contamination of shallow groundwater aquifers. A parameter correlation analysis is presented.
Morgan Tranter, Maria Wetzel, Marco De Lucia, and Michael Kühn
Adv. Geosci., 56, 57–65, https://doi.org/10.5194/adgeo-56-57-2021, https://doi.org/10.5194/adgeo-56-57-2021, 2021
Short summary
Short summary
Barite formation is an important factor for many use cases of the geological subsurface because it may change the rock.
In this modelling study, the replacement reaction of celestite to barite is investigated.
The steps that were identified to play a role are celestite dissolution followed by two-step precipitation of barite: spontaneous formation of small crystals and their subsequent growth.
Explicitly including the processes improve the usability of the models for quantified prediction.
Michael Kühn, Vaughan Stagpoole, Graham Paul D. Viskovic, and Thomas Kempka
Adv. Geosci., 65, 1–7, https://doi.org/10.5194/adgeo-65-1-2024, https://doi.org/10.5194/adgeo-65-1-2024, 2024
Short summary
Short summary
Waiwera is a small coastal village located on New Zealand's North Island above a geothermal reservoir. The origin of the warm water is not well understood. An inferred fault zone at the base of the reservoir is thought to channelise the uprising thermal water. The observed characteristic cold and hot water distribution in the system was simulated and the temperature profiles show an improved agreement in the near field around the centre of the reservoir.
Mansour Hedayatzadeh, Vasilis Sarhosis, Torsten Gorka, Mária Hámor-Vidó, and István Kalmár
Adv. Geosci., 58, 93–99, https://doi.org/10.5194/adgeo-58-93-2022, https://doi.org/10.5194/adgeo-58-93-2022, 2022
Short summary
Short summary
This paper presents the implementation of probabilistic analyses to assess environmental risks while improving the productivity of the in situ coal conversion process. Parametric modelling was employed for the Máza–Váralja (Hungary) coal deposit, and parameter uncertainty was undertaken to identify the potential risks to human health and the environment. The outputs of the parametric study focused on assessing reactor stability, fault integrity, surface subsidence, and hydraulic processes.
Christopher Otto, Svenja Steding, Morgan Tranter, Torsten Gorka, Mária Hámor-Vidó, Wioleta Basa, Krzysztof Kapusta, István Kalmár, and Thomas Kempka
Adv. Geosci., 58, 55–66, https://doi.org/10.5194/adgeo-58-55-2022, https://doi.org/10.5194/adgeo-58-55-2022, 2022
Short summary
Short summary
For a potential utilisation of coal resources located in Hungary, an assessment of groundwater pollution resulting from a water-borne contaminant pool has been undertaken. A sensitivity analysis was carried out by means of numerical simulations. Simulation results demonstrate that fluid flow via the regional faults is the main driver for a potential contamination of shallow groundwater aquifers. A parameter correlation analysis is presented.
Elena Chabab, Michael Kühn, and Thomas Kempka
Adv. Geosci., 58, 47–54, https://doi.org/10.5194/adgeo-58-47-2022, https://doi.org/10.5194/adgeo-58-47-2022, 2022
Short summary
Short summary
The present study, uses density-driven flow and transport models to evaluate mechanisms of saline water intrusion from deep aquifers into the freshwater column used for drinking water supply under different boundary conditions and for a specific site in the German Federal State of Brandenburg. Results show that mainly decreasing groundwater recharge leads to increased and earlier salinisation which highlights the need for waterworks to initiate effective countermeasures quickly and in time.
Michael Kühn, Melissa Präg, Ivy Becker, Christoph Hilgers, Andreas Grafe, and Thomas Kempka
Adv. Geosci., 58, 31–39, https://doi.org/10.5194/adgeo-58-31-2022, https://doi.org/10.5194/adgeo-58-31-2022, 2022
Short summary
Short summary
The geothermal hot water reservoir below the small town of Waiwera in New Zealand has been known to the indigenous Maori for many centuries. Overproduction by European immigrants led to a water level decrease and consequently artesian flow from the wells and the seeps on the beach ceased. The Te Kaunihera o Tāmaki Makaurau Auckland Council established the Waiwera Thermal Groundwater Allocation and Management Plan to allow the geothermal system to recover.
Thomas Kempka, Svenja Steding, and Michael Kühn
Adv. Geosci., 58, 19–29, https://doi.org/10.5194/adgeo-58-19-2022, https://doi.org/10.5194/adgeo-58-19-2022, 2022
Short summary
Short summary
The TRANSPORT Simulation Environment (TRANSPORTSE) was coupled with the geochemical reaction module PHREEQC, providing multiple new features that make it applicable to complex reactive transport problems in various geoscientific fields. Two computationally demanding and complex geochemical benchmarks were used in the present study to successfully verify the code implementation.
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 58, 1–10, https://doi.org/10.5194/adgeo-58-1-2022, https://doi.org/10.5194/adgeo-58-1-2022, 2022
Short summary
Short summary
Porosity-permeability relations are simulated for a precipitation-dissolution cycle in a virtual sandstone. A hysteresis in permeability is observed depending on the geochemical process and dominating reaction regime, whereby permeability varies by more than two orders of magnitude. Controlling parameters for this hysteresis phenomenon are the closure and re-opening of micro-scale flow channels, derived from changes in pore throat diameter and connectivity of the pore network.
Morgan Tranter, Maria Wetzel, Marco De Lucia, and Michael Kühn
Adv. Geosci., 56, 57–65, https://doi.org/10.5194/adgeo-56-57-2021, https://doi.org/10.5194/adgeo-56-57-2021, 2021
Short summary
Short summary
Barite formation is an important factor for many use cases of the geological subsurface because it may change the rock.
In this modelling study, the replacement reaction of celestite to barite is investigated.
The steps that were identified to play a role are celestite dissolution followed by two-step precipitation of barite: spontaneous formation of small crystals and their subsequent growth.
Explicitly including the processes improve the usability of the models for quantified prediction.
Michael Kühn, Natalie C. Nakaten, and Thomas Kempka
Adv. Geosci., 54, 173–178, https://doi.org/10.5194/adgeo-54-173-2020, https://doi.org/10.5194/adgeo-54-173-2020, 2020
Short summary
Short summary
Energy supply in Germany is subject to a profound change. The present paper addresses the German potential of storing excess energy from renewable power sources in the geological subsurface. Wind and solar electricity can be transformed into hydrogen, and with carbon dioxide subsequently into methane. The current potential for combined subsurface storage of methane and carbon dioxide allows to store far more than required to date and is estimated to provide the entire coverage in 2050.
Thomas Kempka
Adv. Geosci., 54, 67–77, https://doi.org/10.5194/adgeo-54-67-2020, https://doi.org/10.5194/adgeo-54-67-2020, 2020
Short summary
Short summary
The TRANsport Simulation Environment (TRANSE) has been developed to improve the flexibility for coupling chemical libraries with fluid flow and the transport of heat and chemical species. The Python-based implementation of TRANSE enables users not experienced in low-level programming languages (e.g., C, C++ or FORTRAN) to undertake required code modifications and integrate chemical modules as required. TRANSE has been successfully verified against benchmarks on density-driven fluid flow.
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 54, 33–39, https://doi.org/10.5194/adgeo-54-33-2020, https://doi.org/10.5194/adgeo-54-33-2020, 2020
Elena Tillner, Maria Langer, Thomas Kempka, and Michael Kühn
Hydrol. Earth Syst. Sci., 20, 1049–1067, https://doi.org/10.5194/hess-20-1049-2016, https://doi.org/10.5194/hess-20-1049-2016, 2016
Short summary
Short summary
The degree of shallow aquifer salinisation triggered by fluid injection into deeper brine-bearing aquifers and brine upward migration through hydraulically conductive faults strongly depends on the regional depth of the freshwater-saltwater boundary, since displaced brines originate only from the upper fault damage zones in the study area. The highest local salinity increase in shallow aquifers occurs in case of closed model boundaries and low fault damage zone volumes.
M. De Lucia, T. Kempka, and M. Kühn
Geosci. Model Dev., 8, 279–294, https://doi.org/10.5194/gmd-8-279-2015, https://doi.org/10.5194/gmd-8-279-2015, 2015
Cited articles
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A
next-Generation Hyperparameter Optimization Framework, in: Proceedings of
the 25rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, https://doi.org/10.1145/3292500.3330701, 2019. a, b
Bear, J.: Dynamics of Fluids in Porous Media, Dover Books on Physics and Chemistry, Dover, New York, 1988. a
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System,
in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD '16,
ACM, New York, NY, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. a, b
Géron, A.: Hands-on Machine Learning with Scikit-Learn and
TensorFlow: Concepts, Tools, and Techniques to Build
Intelligent Systems, O'Reilly Media, ISBN 9781491962268, 2017. a
Goldsim Technology Group: GoldSim User's Guide (Version 14.0),
Tech. rep., 2021. a
Kempka, T., Nakaten, N., Gemeni, V., Gorka, T., Hámor-Vidó, M.,
Kalmár, I., Kapsampeli, A., Kapusta, K., Koukouzas, N., Krassakis, P.,
Louloudis, G., Mehlhose, F., Otto, C., Parson, S., Peters, S., Pyrgaki, K.,
Roumpos, C., Sarhosis, V., and Wiatowski, M.: ODYSSEUS –
Coal-to-liquids Supply Chain Integration in View of Operational,
Economic and Environmental Risk Assessments under Unfavourable
Geological Settings, in: Proceedings of the 38th Annual Virtual
International Pittsburgh Coal Conference, 38th Annual International Pittsburgh Coal Conference 2021: Clean Coal-based Energy/Fuels and the Environment, PCC 2021, 2021, 2, pp. 858–866, 2021. a
Krassakis, P., Pyrgaki, K., Gemeni, V., Roumpos, C., Louloudis, G., and
Koukouzas, N.: GIS-Based Subsurface Analysis and 3D Geological
Modeling as a Tool for Combined Conventional Mining and In-Situ
Coal Conversion: The Case of Kardia Lignite Mine, Western
Greece, Mining, 2, 297–314, https://doi.org/10.3390/mining2020016, 2022. a
Oladyshkin, S.: Efficient Modeling of Environmental Systems in the Face of
Complexity and Uncertainty, https://doi.org/10.18419/OPUS-615, 2014. a
Otto, C., Steding, S., Tranter, M., Gorka, T., Hámor-Vidó, M., Basa, W., Kapusta, K., Kalmár, I., and Kempka, T.: Numerical Analysis of Potential Contaminant Migration from Abandoned In Situ Coal Conversion Reactors, Adv. Geosci., 58, 55–66, https://doi.org/10.5194/adgeo-58-55-2022, 2022. a, b, c
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-Learn: Machine Learning in Python, J. Mach.
Learn. Res., 12, 2825–2830, 2011. a, b, c, d
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2,
2020. a, b
Short summary
The quantification of the impacts on the environment and human health is a crucial prerequisite for geological sub-surface utilisation projects. With the presented approach, the shortcomings of using conceptually simplified models are substantially reduced, since subsurface complexities are accounted for. The transparency of the assessment basis should generally increase the acceptance of geoengineering projects, considered one of the crucial aspects for geological subsurface utilisation.
The quantification of the impacts on the environment and human health is a crucial prerequisite...