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Abstract. Quantifying impacts on the environment and hu-
man health is a critical requirement for geological subsurface
utilisation projects. In practice, an easily accessible interface
for operators and regulators is needed so that risks can be
monitored, managed, and mitigated. The primary goal of this
work was to create an environmental hazards quantification
toolkit as part of a risk assessment for in-situ coal conver-
sion at two European study areas: the Kardia lignite mine
in Greece and the Méza-Vdralja hard coal deposit in Hun-
gary, with complex geological settings. A substantial rock
volume is extracted during this operation, and a contaminant
pool is potentially left behind, which may put the freshwater
aquifers and existing infrastructure at the surface at risk. The
data-driven, predictive tool is outlined exemplary in this pa-
per for the Kardia contaminant transport model. Three input
parameters were varied in a previous scenario analysis: the
hydraulic conductivity, as well as the solute dispersivity and
retardation coefficient.

Numerical models are computationally intensive, so the
number of simulations that can be performed for scenario
analyses is limited. The presented approach overcomes these
limitations by instead using surrogate models to determine
the probability and severity of each hazard. Different sur-
rogates based on look-up tables or machine learning algo-
rithms were tested for their simplicity, goodness of fit, and
efficiency. The best performing surrogate was then used to
develop an interactive dashboard for visualising the hazard
probability distributions.

The machine learning surrogates performed best on the
data with coefficients of determination R% > 0.98, and were
able to make the predictions quasi-instantaneously. The re-
tardation coefficient was identified as the most influential pa-
rameter, which was also visualised using the toolkit dash-
board. It showed that the median values for the contaminant
concentrations in the nearby aquifer varied by five orders of
magnitude depending on whether the lower or upper retarda-
tion range was chosen. The flexibility of this approach to up-
date parameter uncertainties as needed can significantly in-
crease the quality of predictions and the value of risk assess-
ments. In principle, this newly developed tool can be used as
a basis for similar hazard quantification activities.

1 Introduction

With any subsurface utilisation comes the risk of accompa-
nying impacts on the environment and human health, e.g.,
through migration of groundwater-borne contaminants, in-
duced seismicity, and subsidence. To manage and mitigate
these risks, it is therefore crucial to identify and quantify the
related hazards with the aid of all available data and state-
of-the-art models. A uniform guideline for comprehensive
risk assessments of related projects such as in situ coal con-
version is currently only implemented to a limited extent in
common practice. In addition, the respective role of individ-
ual subsurface processes is often dependent on and interwo-
ven with many uncertain parameters and therefore cannot
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be trivially predicted (Oladyshkin, 2014). An objective and
transparent risk assessment is indispensable for a publicly
accepted, long-term economic, and environmentally sound
design of the future use of the subsurface.

Geological hazards are predicted on the basis of scenario
analyses of one or multiple numerical models that take into
account the relevant processes in the subsurface, e.g., ge-
omechanics and contaminant transport (Otto et al., 2022;
Hedayatzadeh et al., 2022). The models are defined by a
set of parameters that are typically uncertain over a wide
range in the geosciences. Furthermore, the more input pa-
rameters are used to define a model, the more scenarios have
to be run to obtain a sufficient representation of possible
outcomes. There are software solutions to accomplish such
tasks, such as GoldSim (Goldsim Technology Group, 2021),
a user-friendly, graphical program for performing probabilis-
tic simulations to support management and decision-making.
However, a general challenge is that the numerical simula-
tions can take a long time due to the particular demands on
model complexity and accuracy. Therefore, it is not feasible
to carry out these simulations on demand, but rather they are
carried out in advance on the basis of prior knowledge.

This study proposes an approach for developing a hazard
assessment toolkit that overcomes these limitations through
data-driven surrogates. These are trained on the scenario re-
sults of each modular numerical model of a given site and
then integrated into a user interface to calculate hazard prob-
ability distributions on demand based on controllable param-
eter ranges. A surrogate is treated as a black-box function
that maps the input data to the output data of the scenario
analyses and is therefore generally much faster to solve than
physical models involving partial differential equations. This
also enables a loose coupling of the individual model com-
ponents, which would otherwise have to be neglected due to
model restrictions. For example, geomechanical and hydro-
geological processes are usually treated as independent, al-
though the interdependencies, e.g., the development of new
hydraulic pathways, can be significant. Therefore, the cou-
pled surrogates are more flexible and the predictive power is
improved.

The approach was applied to the two study areas Kardia,
Greece and M4za-Vdralja, Hungary with complex geological
settings as part of a risk assessment for in-situ coal conver-
sion (Kempka et al., 2021; Krassakis et al., 2022). A sub-
stantial rock volume is extracted during this operation, and a
contaminant pool is potentially left behind, which may put
the environment at risk. With the presented approach, the
shortcomings of using conceptually simplified models are
substantially reduced, since subsurface complexities are ac-
counted for in the surrogate training data. The transparency
of the assessment basis should generally increase the accep-
tance of geoengineering projects, which is considered one of
the crucial aspects for the further development and dissemi-
nation of geological subsurface use. In principle, this newly
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developed tool can be used as a blueprint for similar hazard
quantification efforts.

2 Materials and Methods

The scenario analysis of each modular numerical model of
the investigated sites Kardia and Maza-Vairalja form the data
basis for this study. The number of training examples per-
formed for each numerical model ranged from 66 to 12 000,
depending on how many were possible due to the runtime
of a simulation. The models of Maza-Varalja are described
in detail in accompanying studies (Otto et al., 2022; Heday-
atzadeh et al., 2022). In this article, the development of the
surrogate and the toolkit are demonstrated using the Kardia
contaminant transport model as an example. The most im-
portant work steps are briefly outlined here and explained
in more detail in the following sections. The main workflow
steps are briefly outlined here and explained in more detail in
the following sections (Fig. 1).

1. Extract or calculate hazard metrics from the raw data
(e.g., maximum subsidence, magnitude of induced seis-
micity)

2. Analyse, visualise, and clean the data, as well as calcu-
late parameter correlations.

3. Test different surrogate models and select the most ca-
pable one for the toolkit.

4. Implement the surrogate into an application with a user
interface for calculating updated hazard probability dis-
tributions.

2.1 Data Analysis and Transformation

An initial data analysis was carried out to determine pa-
rameter correlations and outliers. Physically implausible data
points, or sets outside a 99 % confidence interval (43 stan-
dard deviations) were filtered out. The bivariate correlation
coefficients were calculated for each parameter, which also
serves as a data sanity check. If the input parameters of a
sensitivity analysis are uncorrelated to each other, this is an
indication that the parameter space is optimally covered.
For input parameters that span multiple scales of magni-
tude, the logarithm was used instead to give each magni-
tude the same weight in the distribution, which can increase
the surrogate fit significantly. Additionally, numerical values
were standardised by removing the mean and scaling to unit
variance, which is a common requirement for machine learn-
ing estimators (Géron, 2017). Categorical data were encoded
either with integers, or one-hot encoded if integers give mis-
leading values (Pedregosa et al., 2011). For instance, the sim-
ulation output times had the discrete output values 10, 30,
and 50 years, which were mapped to 0, 1, and 2, respectively.
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Figure 1. Schematic overview of the workflow involved to streamline results of numerical simulations into an application with surrogates as

the basis for parameter estimation.

2.2 Surrogate Models

Strategies for developing surrogates range from traditional
look-up tables and regression functions, through to modern
machine learning algorithms (ML). The initial selection cri-
teria used to select four surrogate candidates were simplicity
of configuration, sufficient accuracy, and speed of prediction,
in other words: simplicity, fit, and efficiency.

Look-up tables are more straightforward to set up, but their
accuracies are directly proportional to how well the param-
eter space is covered by the training data. Regressors and,
by extension, MLs can achieve much higher accuracy even
with small training samples, i.e., they can generalise well be-
tween sample points. Another difference is that look-up ta-
bles load the entire dataset into memory at runtime, which
can become memory-intensive and slow for larger data sets.
MLs, on the other hand, are parameterised in advance on the
training data set and are therefore comparatively lightweight.
However, this training requires an additional step of optimis-
ing hyperparameters (internal algorithm parameters) in ad-
vance. Depending on the size of the data set, this can be very
time-consuming for the modeller and the algorithm itself.

The applicability ultimately depends on the sample den-
sity and the non-linearities in the data and is also a trade-off
between simplicity and quality of fit. From a vast number of
possible algorithms, the following have been selected based
the data analysis and on experience.

1. Nearest neighbour (LUT). Looks for the parame-
ter set that is closest to the chosen one and re-
trieves the corresponding output value. It is the
simplest approach and is fast to implement with
Scipy’s v1.8.0 NearestNDInterpolator (Pe-
dregosa et al., 2011). It works best if the parameter
space is evenly well covered and the (hyperplane) dis-
tances of the parameter sets are small. For very large
data sets > 10000, it becomes inefficient.
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2. Radial Basis Function (LUT-RBF). Searches for the
closest N parameter sets and additionally interpolates
with a kernel function. It was implemented using
Scipy’s v1.8.0 RBF Interpolator (Virtanen et al.,
2020). It is an interpolant which takes a linear combi-
nation of radial basis functions centred at one point plus
a polynomial with a specified degree. The linear kernel
was used because it avoids overfitting. A disadvantage is
that it requires a lot of memory for the interpolation co-
efficients and becomes impractical with more than 1000
data points.

3. Support Vector Regressor (SVR). ML regressor imple-
mented with Scikit-Learn’s v1.1.0 support vector ma-
chine library (Pedregosa et al., 2011). In principle, it
can solve the same problems as linear regression. How-
ever, it can also be used to model non-linear relation-
ships between variables, and offers additional flexibility
by fitting hyperparameters. It is constructed using a set
of training objects, each is represented by a vector in a
vector space. A hyperplane is fit into this space, which
acts as a separator and divides the training objects into
classes.

4. XGBoosting regressor (XGB). XGBoost v1.6.1 is one of
the most popular non-neural network machine learning
algorithms to date (Chen and Guestrin, 2016). It is ef-
ficient, can handle a wide variety of data and resolves
non-linear dependencies. It is based on decision tree en-
sembles that facilitate predictions using an ensemble of
weak learners. One drawback is that it has many inter-
nal hyperparameters that require a special optimisation
routine to tune to a particular data set.

Tuning hyperparameters was done with a dedicated
Python package for parameter optimisation called Optuna,
v2.10.0 (Akiba et al., 2019). It provides an automated search
algorithm for optimal hyperparameters. For the parameter
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Table 1. Hyperparameter space investigated for the machine learn-
ing algorithms XGBoosting regressor (XGB) and Support Vector
Regressor (SVR), as recommended in the documentations (Chen
and Guestrin, 2016; Pedregosa et al., 2011).

Method  Hyperparameter Value
max_depth [1,...,18]
min_split_loss [0.0,...,3.0]
min_child_weight [1,...,21]
subsample [0.5,...,1.0]

XGB learning_rate [1x 10’3, o, 3x 10’1], log
colsample_bytreee [0.05, ..., 1.0]
num_boost_rds 1000
early_stopping_rds 100
objective squarederror
eval_metric rmse
kernel [linear, rbf]

SVR tol [lxlO_j,,..,lx]O_l]
¢} [Ix1077,...,25.0], log
epsilon [1x1074, ..., 1.0]

sampling, the Tree-structured Parzen Estimator algorithm
was applied (optuna.samplers. TPESampler), which is flexi-
ble and tends to converge into global minima efficiently. For
each tuning study, 300 trial samplings were carried out. The
investigated hyperparameter space for the XGB and SVR
methods are shown in Table 1.

The comparison of the surrogates was done by first split-
ting the data set into a train and test data set (randomised
75 % and 25 % of the total data set, respectively). The surro-
gates were then trained using the train data set. The coeffi-
cient of determination R? between the frue numerical model
and the surrogate model was calculated based on the un-
seen or test data set. The surrogate approach with the highest
R? was chosen for the toolkit. Additionally, the root mean
squared error (RMSE) was calculated. If this value was too
high for all approaches, LUT was used as a fallback solution,
so that the user can only choose between the simulations ac-
tually performed.

2.3 One-Way Hydromechanical Coupling

The efficiency of surrogates compared to numerical models
allows for loose coupling of multiple model components. In
the toolkit, a one-way hydromechanical coupling was im-
plemented using data from both contaminant transport and
geomechanical models. Changes in fracture properties due
to rock deformation, i.e., shear and normal displacements,
can influence hydraulic properties and the resulting contami-
nant transport. To take this into account when quantifying the
risk of aquifer contamination, changes in fracture opening
are calculated from the normal displacements at each frac-
ture section (Otto et al., 2022).

A simplified, schematic representation of the subsurface
in Maza-Varalja can be seen in Fig. 2a. The model area is
crossed by two regional faults that determine the ground-
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water discharge. Figure 2b shows the steps carried out in
the hydromechanical coupling. (1) The permeability of the
evolved fault sections due to normal displacement was cal-
culated using the cubic law (Bear, 1988). (2) The effective
permeability of each fault was determined analogously to a
serial circuit using the harmonic mean. Then, the effective
permeability was calculated analogously to a parallel circuit
using the arithmetic mean of both faults. (3) This increased
fault permeability was then plugged into the hydrogeological
model to model contaminant transport.

2.4 Toolkit Application

The frontend of the toolkit was created using Streamlit,
v1.9.0, a Python package for web-based dashboards (Stream-
lit, 2022). Each data set is represented by its own runner,
which manages the user inputs (widgets), the statistical rep-
resentation of the individual output parameters and the call-
back/update functions. These are triggered each time a wid-
get input is changed. The initial steps for each record are as
follows (performed by the runner):

1. Define input and output parameters; determine their
ranges; define surrogate type.

2. If surrogate is look-up table based, then load the original
data, else load the previously trained ML estimator.

3. Create an additional runtime data set. This consists of
1024 samples and is derived by uniform sampling of the
input parameter ranges using Sobol’s quasi Monte Carlo
(QMC) sampling algorithm implemented in Scipy (Vir-
tanen et al., 2020).

4. Calculate outputs using the surrogate and statistics of
the results.

The custom runtime data set is updated each time the pa-
rameter ranges are changed. To speed up the callback func-
tions, all data except the runtime data set is cached using
Streamlit’s cache function (Streamlit, 2022). This saves time
in use, as the numerical model data and/or surrogate param-
eters would have to be loaded from disk each time.

3 Results and Discussion
3.1 Data Analysis

In the following, the Kardia contaminant transport dataset
is analysed and processed with regard to the surrogate de-
velopment. Parameter units are omitted intentionally here, as
some data are transformed during this step and would have
no meaningful physical unit. The main objective is to eval-
uate the values and parameter dependencies rather than the
physical quantities, as the surrogate in the toolkit is purely
data-driven.

https://doi.org/10.5194/adgeo-58-67-2022



M. Tranter et al.: Environmental hazard quantification toolkit based on modular numerical simulations 71

(@) Matrix

Fault b

(b)

Geomechanical

Calculate effective

Fault a

Hydrogeological

model —p permeability —P model

Permeability from K Thg, Add fracture

i Serial: =sS=&m T

normal dlsplacement 5 eria @ S K}z - permeability (K. ) to
at each section ’ matrix (K )
) Parallel "
o 5_@ Kprae = wq Ko +wp Ky P et Ktrac + (A2 — det) Km
T2 Wa + wy o

Figure 2. (a) Simplified subsurface schematic of the Maza-Vdralja site showing the two main regional faults which determine the discharge of
the model. In the geomechanical model, subsections of each fault are monitored individually with respect to shear and normal displacements.
(b) Flow chart of the implemented hydromechanical coupling, which takes changes in fracture apertures into account and updates the
permeability of the hydrogeological/contaminant transport model. K is the permeability, § is the normal displacement or aperture, 7 is the
amount of individual sections, wy are weights based on flow cross-section.

Three input parameters were varied in the scenario anal-
ysis: the overburden hydraulic conductivity as well as the
longitudinal dispersivity and the retardation coefficient of the
contaminant in the overburden. It was assumed that hydraulic
conductivity may increase as a result of the excavation, so
values up to an order of magnitude above the predetermined
baseline were investigated. The parameter was therefore con-
verted into a simple factor of the baseline hydraulic conduc-
tivity with values from 1-10 (X¢). The longitudinal disper-
sivity was varied from 1072 to 10m. Since this parameter
spans several orders of magnitude, the logarithm was used
instead (logalpha) so that each value is equally represented
in the data set. The retardation coefficient (R) ranges from
1-9, and was not transformed. The scenario analysis was per-
formed with 100 parameter sets determined by Latin Hyper
Cube Sampling to achieve pseudo-random coverage of the
predefined parameter ranges. Note that logalpha was drawn
from a log-uniform distribution, and Xy and R were drawn
from a uniform distribution.

One model output that is shown here exemplary was the
maximum concentration of the contaminant in the nearby
aquifer at the defined times 10, 30, and 50 years after the
abandonment and flooding of the underground construction.
These discrete times steps can also be seen as an input fea-
ture of the model output to be varied in the toolkit. Simu-
lation time was therefore treated as a categorical input pa-
rameter of the surrogate and encoded as integers (time, re-
sulting in a total sample size of 300 (100 samples per time
step). The source contaminant concentration was normalised
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to 1.0g L™, and then the logarithm was used for the model
output predictions (log cmax)-

Figure 3 shows the data distribution of each transformed
input parameter against the logarithm of the maximum con-
taminant concentration in the nearby aquifer. The magnitude
of the output values varies between —17.3 and —9.3 and the
median is —14.7, so the output data is slightly skewed to-
wards the lower bound. Visually, the hydraulic conductivity
(Xkf) shows no correlation with contaminant transport. The
dispersion parameter only has a noteworthy impact for val-
ues above 0. A clear negative and positive correlation can be
seen for the retardation coefficient and the simulation time,
respectively (Fig. 3c and d). This is to be expected because a
higher retardation coefficient means that the contaminant is
sorbed along the flow path and less contaminants will reach
the aquifer. In contrast, a longer transport time leads to more
contaminants entering the aquifer. It can also be seen that the
model output variance increases with each time step, while
the median value increases almost linearly. This indicates
a non-linear effect together with the dispersion coefficient,
which is responsible for an increasing plume size with trans-
port time.

The parameter correlations were quantified with Pearson’s
correlation coefficients and are shown in a heatmap for all pa-
rameter couples (Fig. 4). The previously determined correla-
tions for R and time with the model output can be confirmed
here, which have correlation coefficients of about —0.7 and
0.6, respectively. For logalpha, the coefficient is only 0.19
and thus is slightly positively correlated, whereas Xk is prac-
tically not correlated (0.07). The low correlations of the input
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Figure 3. Data distribution of all input parameters of the contam-
inant transport model of the Kardia site against the output maxi-
mum contaminant concentration in the aquifer (log cpmax) with ker-
nel density estimations of the points (shades). (a) hydraulic con-
ductivity factor (Xk¢), (b) logarithm of the longitudinal dispersiv-
ity (logalpha), (c) retardation coefficient (R), (d) simulation time
(time). Units were left out deliberately, as some data are scaled/en-
coded and actual values could make no sense.
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Figure 4. Heatmap for the input parameters and the maximum con-
taminant concentration in the aquifer (logcmax) presenting Pear-
son’s correlation coefficient r of each parameter pair.

parameters to each other are due to the stratified sampling
procedure. Since the coefficient only quantifies linear cor-
relations, but non-linear correlations can be significant, all
input parameters were included in the surrogate modelling.
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Figure 5. Surrogate results for the output maximum contami-
nant concentration in the aquifer (logcmax) compared to numeri-
cal model results (left) and corresponding errors (right). (a) Nearest
look-up table approach (LUT), (b) look-up table with radial basis
function interpolation (LUT-RBF). Units are left out deliberately.

3.2 Surrogate Selection

The pre-chosen surrogate approaches were each evaluated
with two randomly splits of the data set, which are called
test and train, or seen and unseen data set, respectively. The
resulting true versus predicted values, i.e., the numerical and
surrogate model results, and the respective errors are shown
in Figs. 5 and 6.

The look-up table methods (LUT and LUT-RBF) per-
formed less well than the ML methods. LUT has errors rang-
ing from —1.02 to 1.05 with a standard deviation of 0.48,
and LUT-RBF has errors ranging from —0.49 to 0.96 with
a standard deviation of 0.29. As this is in logarithmic scale,
predictive errors of up to one order of magnitude compared
to the modelled results are expected, which can be of sig-
nificance in risk management. These poor results can be at-
tributed to the relatively small sample size of the underlying
scenario analysis. The precision of these look-up table based
approaches can be increased by using more samples in the
scenario analysis. However, this is not always possible if the
underlying numerical models are complex and have a long
runtime.

The machine learning algorithms (XGB and SVR), on the
other hand, were better able to capture the non-linear param-
eter correlations and reproduce the data with lower errors.
Although the error ranges are similar — —0.62 to 0.47 and
—0.82 to 0.93 for SVR and XGB, respectively — the stan-
dard deviations are only 0.17 and 0.24, respectively. This
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Figure 6. Surrogate results for the output maximum contami-
nant concentration in the aquifer (logcmax) compared to numeri-
cal model results (left) and corresponding errors (right). (a) Support
Vector Regression (SVR), (b) XGBoosting Regressor (XGB). Units
are left out deliberately.

suggests that there are some outliers in the predictions that
are particularly erroneous, but overall the errors are normally
distributed and close to zero.

The corresponding R? values for each surrogate on the
train and test data set are shown in Fig. 7. The R? values
are, as expected from the previous findings, highest for the
SVR method, although the XGB method performs similarly
well (both are above 0.98). Apart from fit, there seems to be
no clear indication of whether one algorithm is better than
another in terms of simplicity and efficiency. All surrogates
worked with similar efficiency, which was ultimately not no-
ticeable from the toolkit users’ point of view. The ML meth-
ods require more configuration and parametrisation, but with
special tuning packages like Optuna this can be automated
to a certain extent (Akiba et al., 2019). Therefore, SVR was
chosen for this dataset in the toolkit as it performed best with
regard to R? overall.

It is recommended to test different surrogate types as each
dataset is unique. While XGB worked well for all investi-
gated data sets (Kardia and Mdza-Viralja), it was not al-
ways the best solution, as was the case for the here presented
evaluation. In future studies, deep learning algorithms such
as deep neural networks could be considered as they have
a remarkable ability to adapt to non-linear, multi-parameter
problems. Although their configuration is even more tedious
than that of the ML methods proposed here, new tools to re-
duce the effort are expected in the near future. This could
reduce the surrogate errors for very complex data sets.
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Figure 7. Comparison of four different surrogate strategies using
the coefficient of determination for the maximum contaminant con-
centration in the aquifer. All strategies do well on the train set. But,
SVR has the best fit for the test set, thus it was implemented in the
toolkit application.

3.3 Toolkit Application

Figure 8 showcases the contaminant transport predictions us-
ing the selected SVR surrogate in the web based dashboard.
Two main areas are presented to the user: the input param-
eter section on the left side, and the main output section in
the centre. The application is interactive so that the user can
choose, which parameters or, if applicable, parameter ranges
to choose from. The probabilistic hazard predictions (his-
tograms) — in this case the maximum contaminant concen-
tration in the nearby aquifer — will then be updated based on
the chosen parameter set. Behind the scenes, a new data set
will be produced, and the surrogate is used to make rapid cal-
culations within seconds, which would take hours to days, if
the original numerical model would be used.

In Fig. 8, two different input parameter sets, and the corre-
sponding histograms are shown. All parameters except the
retardation coefficient were kept the same to highlight its
specific effect on contaminant transport. The top section
(Fig. 8a) presents the range of R =[1,1.9], and the lower
section (Fig. 8b) presents a higher range of R =[8.2, 10].
While the first case is representative for a near conservative
transport, the latter is a case of significant sorption along the
flow path. Correspondingly, the median of the concentration
probability for the conservative case is around 10710 g L=,
and around 10~!5 g L=! for the retarded case; a difference of
around five orders of magnitude.

The shown concentration values are normalised to a source
concentration of 1 gL~!. In the toolkit, the source concentra-
tion and the threshold contaminant concentration are modifi-
able. The former multiplies the concentration data with a fac-
tor to have the actually expected source concentration. The
latter adds a vertical line in the histogram plot to help visu-
alise if a specific threshold is exceeded for the given input.
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Figure 8. Prediction dashboard with interactive input parameters for the contaminant transport model of Kardia using the SVR surro-
gate. Different input parameter selections were used: (a) Xy¢ = [1, 11], R =[1, 1.9], logalpha = [—2, 1], and time = 50. (b) Xy = [1, 11],
R =1[8.2,10.0], logalpha = [—2, 1], and time = 50. A higher retardation coefficient range significantly reduces the expected contaminant

concentration in the aquifer.

These options can be used if the model should be used for a
specific contaminant.

4 Conclusions

The quantification of hazards in the course of subsurface util-
isation projects is essential for risk management and mitiga-
tion of environmental problems as well as for human safety.
This is usually done with numerical models, as they can re-
solve the effects of processes in the subsurface in detail, but
they have the disadvantage of being computationally inten-
sive. For planning and managing a project, it is practically
not feasible to run these models on demand. In this study, a
newly developed toolkit was presented for quantifying haz-
ards that instead uses fast, data-driven surrogate models. This
allows flexible, on-demand calculations of hazard probabili-
ties in light of updated knowledge of model input parameters.

The approach was applied to the two study areas Kardia,
Greece and Maza-Varalja, Hungary as part of a risk assess-
ment for in-situ coal conversion. The scenario analyses of the
geomechanical and contaminant transport processes of the
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individual sites form the data basis for this study, whereby
the Kardia transport model was examined in more detail here
as an example. In a first step, the data were analysed and
transformed with regard to parameter dependencies as well
as numerical and categorical value types, which is necessary
to enable surrogate modelling. Based on the data charac-
teristics such as linear and non-linear parameter dependen-
cies as well as experience, four surrogate algorithms were
pre-selected for further comparison; two were look-up table
based and two were machine learning algorithms. They were
each evaluated on the basis of simplicity, goodness of fit and
efficiency, with the greatest emphasis on goodness of fit, i.e.,
the ability to reproduce the results of the numerical model
using only the input parameters.

The surrogates based on look-up tables did not perform
as well, which was due to the relatively small sample size.
However, due to the high complexity of the numerical mod-
els and the long simulation times, it is often not possible to
create more samples. This is where machine learning algo-
rithms come into their own, as they are able to derive com-
plex parameter dependencies even with a limited amount
of input data. They were able to reproduce previously un-
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seen scenarios with high accuracy (R? > 0.98). This made
it possible to integrate quasi-immediate hazard calculations
into a web-based dashboard to predict their probabilities us-
ing user-selected input parameter ranges with little accuracy
trade-off.

The transparency of the assessment basis should generally
increase the acceptance of geoengineering projects, which is
seen as one of the crucial aspects for the further develop-
ment and dissemination of geological subsurface utilisation.
Furthermore, the flexibility of this approach to couple com-
plex subsurface processes and adapt to new incoming data in
terms of parameter uncertainties during a project phase can
significantly increase the predictive value of hazard quantifi-
cation. In principle, this newly developed tool can be used
as a template for similar hazard quantification efforts, such
as radioactive waste disposal, deep geothermal energy, and
material energy storage.
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