Articles | Volume 54
https://doi.org/10.5194/adgeo-54-173-2020
https://doi.org/10.5194/adgeo-54-173-2020
03 Dec 2020
 | 03 Dec 2020

Geological storage capacity for green excess energy readily available in Germany

Michael Kühn, Natalie C. Nakaten, and Thomas Kempka

Related authors

Preface to the special issue of the Division Energy, Resources and the Environment at the EGU General Assembly 2024
Michael Kühn, Giorgia Stasi, Viktor J. Bruckman, Sonja Martens, and Johannes Miocic
Adv. Geosci., 65, 113–115, https://doi.org/10.5194/adgeo-65-113-2024,https://doi.org/10.5194/adgeo-65-113-2024, 2024
New data for a model update of the Waiwera geothermal reservoir in New Zealand
Michael Kühn, Vaughan Stagpoole, Graham Paul D. Viskovic, and Thomas Kempka
Adv. Geosci., 65, 1–7, https://doi.org/10.5194/adgeo-65-1-2024,https://doi.org/10.5194/adgeo-65-1-2024, 2024
Short summary
Preface to the special issue of the Division Energy, Resources and the Environment at the EGU General Assembly 2023
Michael Kühn, Viktor J. Bruckman, Sonja Martens, Johannes Miocic, and Giorgia Stasi
Adv. Geosci., 62, 67–69, https://doi.org/10.5194/adgeo-62-67-2024,https://doi.org/10.5194/adgeo-62-67-2024, 2024
Uranium migration lengths in Opalinus Clay depend on geochemical gradients, radionuclide source term concentration and pore water composition
Theresa Hennig and Michael Kühn
Adv. Geosci., 62, 21–30, https://doi.org/10.5194/adgeo-62-21-2023,https://doi.org/10.5194/adgeo-62-21-2023, 2023
Short summary
Hydrogeochemical impact of Opalinus Clay system shown in migration lengths of uranium
Theresa Hennig and Michael Kühn
Saf. Nucl. Waste Disposal, 2, 147–147, https://doi.org/10.5194/sand-2-147-2023,https://doi.org/10.5194/sand-2-147-2023, 2023
Short summary

Cited articles

acatech: CCU and CCS – Building Blocks for Climate Protection in Industry, Analysis, Options and Recommendations, National Academy of Science and Engineering, acatech Position Paper, available at: available at: https://en.acatech.de/publication/ (last access: 10 November 2020), 2018. 
DVGW: Technoökonomische Studie von Power-to-Gas-Konzepten Teilprojekte B-D, DVGW Deutscher Verein des Gas- und Wasserfaches e. V. Technisch-wissenschaftlicher Verein, Abschlussbericht DVGW-FKZ G 3/01/12 TP B-D, available at: https://www.dvgw.de/medien/dvgw/forschung/berichte/g3_01_12_tp_b_d.pdf (last access: 10 November 2020), 2014. 
EID Energie Informationsdienst GmbH: Underground Gas Storage in Germany, Erdöl, Erdgas, Kohle, 128, 412–423, https://doi.org/10.19225/191101, 2012. 
EID Energie Informationsdienst GmbH: Underground Gas Storage in Germany, Erdöl, Erdgas, Kohle, 135, 415–420, https://doi.org/10.19225/191101, 2019. 
EPRI: Handbook of Energy Storage for Transmission or Distribution Applications. Electric Power Research Institute EPRI, USA, available at: http://www.w2agz.com/Library/EPRI_Sources (last access: 10 November 2020), 2002. 
Download
Short summary
Energy supply in Germany is subject to a profound change. The present paper addresses the German potential of storing excess energy from renewable power sources in the geological subsurface. Wind and solar electricity can be transformed into hydrogen, and with carbon dioxide subsequently into methane. The current potential for combined subsurface storage of methane and carbon dioxide allows to store far more than required to date and is estimated to provide the entire coverage in 2050.