Articles | Volume 58
https://doi.org/10.5194/adgeo-58-19-2022
https://doi.org/10.5194/adgeo-58-19-2022
03 Nov 2022
 | 03 Nov 2022

Verification of TRANSPORT Simulation Environment coupling with PHREEQC for reactive transport modelling

Thomas Kempka, Svenja Steding, and Michael Kühn

Related authors

New data for a model update of the Waiwera geothermal reservoir in New Zealand
Michael Kühn, Vaughan Stagpoole, Graham Paul D. Viskovic, and Thomas Kempka
Adv. Geosci., 65, 1–7, https://doi.org/10.5194/adgeo-65-1-2024,https://doi.org/10.5194/adgeo-65-1-2024, 2024
Short summary
Environmental hazard quantification toolkit based on modular numerical simulations
Morgan Tranter, Svenja Steding, Christopher Otto, Konstantina Pyrgaki, Mansour Hedayatzadeh, Vasilis Sarhosis, Nikolaos Koukouzas, Georgios Louloudis, Christos Roumpos, and Thomas Kempka
Adv. Geosci., 58, 67–76, https://doi.org/10.5194/adgeo-58-67-2022,https://doi.org/10.5194/adgeo-58-67-2022, 2022
Short summary
Numerical Analysis of Potential Contaminant Migration from Abandoned In Situ Coal Conversion Reactors
Christopher Otto, Svenja Steding, Morgan Tranter, Torsten Gorka, Mária Hámor-Vidó, Wioleta Basa, Krzysztof Kapusta, István Kalmár, and Thomas Kempka
Adv. Geosci., 58, 55–66, https://doi.org/10.5194/adgeo-58-55-2022,https://doi.org/10.5194/adgeo-58-55-2022, 2022
Short summary
Upwelling mechanisms of deep saline waters via Quaternary erosion windows considering varying hydrogeological boundary conditions
Elena Chabab, Michael Kühn, and Thomas Kempka
Adv. Geosci., 58, 47–54, https://doi.org/10.5194/adgeo-58-47-2022,https://doi.org/10.5194/adgeo-58-47-2022, 2022
Short summary
Geographic Information System (GIS) as a basis for the next generation of hydrogeological models to manage the geothermal area Waiwera (New Zealand)
Michael Kühn, Melissa Präg, Ivy Becker, Christoph Hilgers, Andreas Grafe, and Thomas Kempka
Adv. Geosci., 58, 31–39, https://doi.org/10.5194/adgeo-58-31-2022,https://doi.org/10.5194/adgeo-58-31-2022, 2022
Short summary

Cited articles

Anderson, T. A., Liu, H., Kuper, L., Totoni, E., Vitek, J., and Shpeisman, T.: Parallelizing Julia with a Non-Invasive DSL, in: 31st European Conference on Object-Oriented Programming (ECOOP 2017), edited by: Müller, P., Vol. 74 of Leibniz International Proceedings in Informatics (LIPIcs), 4:1–4:29, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, https://doi.org/10.4230/LIPIcs.ECOOP.2017.4, 2017. a
Bell, I. H., Wronski, J., Quoilin, S., and Lemort, V.: Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp, Indust. Eng. Chem. Res., 53, 2498–2508, https://doi.org/10.1021/ie4033999, 2014. a
Charlton, S. R. and Parkhurst, D. L.: Modules based on the geochemical model PHREEQC for use in scripting and programming languages, Comput. Geosci., 37, 1653–1663, https://doi.org/10.1016/j.cageo.2011.02.005, 2011. a
De Lucia, M. and Kühn, M.: DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates, Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021, 2021a. a
De Lucia, M. and Kühn, M.: Geochemical and reactive transport modelling in R with the RedModRphree package, Adv. Geosci., 56, 33–43, https://doi.org/10.5194/adgeo-56-33-2021, 2021b. a
Download
Short summary
The TRANSPORT Simulation Environment (TRANSPORTSE) was coupled with the geochemical reaction module PHREEQC, providing multiple new features that make it applicable to complex reactive transport problems in various geoscientific fields. Two computationally demanding and complex geochemical benchmarks were used in the present study to successfully verify the code implementation.