Articles | Volume 65
https://doi.org/10.5194/adgeo-65-103-2024
https://doi.org/10.5194/adgeo-65-103-2024
17 Dec 2024
 | 17 Dec 2024

Physics-based numerical evaluation of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) in the Upper Jurassic reservoir of the German Molasse Basin

Kalliopi Tzoufka, Guido Blöcher, Mauro Cacace, Daniela Pfrang, and Kai Zosseder

Related authors

Characterization of artesian flow and heat transition in an ATES research wellbore using DTS monitoring and numerical modelling
Liang Pei, Lioba Virchow, Guido Blöcher, Stefan Kranz, and Ali Saadat
Adv. Geosci., 65, 37–44, https://doi.org/10.5194/adgeo-65-37-2024,https://doi.org/10.5194/adgeo-65-37-2024, 2024
Short summary
Laboratory heat transport experiments reveal grain size and flow velocity dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1949,https://doi.org/10.5194/egusphere-2024-1949, 2024
Short summary
Thermal structure of the southern Caribbean and northwestern South America: implications for seismogenesis
Ángela María Gómez-García, Álvaro González, Mauro Cacace, Magdalena Scheck-Wenderoth, and Gaspar Monsalve
Solid Earth, 15, 281–303, https://doi.org/10.5194/se-15-281-2024,https://doi.org/10.5194/se-15-281-2024, 2024
Short summary
Optimization approaches for the design and operation of open-loop shallow geothermal systems
Smajil Halilovic, Fabian Böttcher, Kai Zosseder, and Thomas Hamacher
Adv. Geosci., 62, 57–66, https://doi.org/10.5194/adgeo-62-57-2023,https://doi.org/10.5194/adgeo-62-57-2023, 2023
Short summary
Inverse flow zone characterization using distributed temperature sensing in a deep geothermal production well located in the Southern German Molasse Basin
Felix Schölderle, Daniela Pfrang, and Kai Zosseder
Adv. Geosci., 58, 101–108, https://doi.org/10.5194/adgeo-58-101-2023,https://doi.org/10.5194/adgeo-58-101-2023, 2023
Short summary

Cited articles

Cacace, M. and Blöcher, G.: MeshIt – a software for three dimensional volumetric meshing of complex faulted reservoirs, Environ. Earth Sci., 74, 5191–5209, https://doi.org/10.1007/s12665-015-4537-x, 2015.  
Cacace, M. and Jacquey, A. B.: Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks, Solid Earth, 8, 921–941, https://doi.org/10.5194/se-8-921-2017, 2017. 
Collignon, M., Klemetsdal, Ø. S., Møyner, O., Alcanié, M., Rinaldi, A. P., Nilsen, H., and Lupi, M.: Evaluating thermal losses and storage capacity in high-temperature aquifer thermal energy storage (HT-ATES) systems with well operating limits: insights from a study-case in the Greater Geneva Basin, Switzerland, Geothermics, 85, 101773, https://doi.org/10.1016/j.geothermics.2019.101773, 2020. 
Doughty, C., Hellström, G., Tsang, C. F., and Claesson, J.: A dimensionless parameter approach to the thermal behavior of an aquifer thermal energy storage system, Water Resour. Res., 18, 571–587, https://doi.org/10.1029/WR018i003p00571, 1982. 
Flechtner, F., Loewer, M., and Keim, M.: Updated stock take of the deep geothermal projects in Bavaria, Germany (2019), in: Proceedings World Geothermal Congress, Reykjavik, Iceland, 16 April–2 May 2020, Congress Proceedings, 2020. 
Download
Short summary
Concepts of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) are investigated for system application in the German Molasse Basin. We quantify via physics-based numerical modelling the system performance with respect to HT-ATES concept development and provide a predictive analysis of HT-ATES application in the Upper Jurassic reservoir. Results demonstrate a non-uniform layer-specific distribution of the thermal front propagation, while promising heat recovery efficiencies are predicted.