Articles | Volume 58
21 Nov 2022
 | 21 Nov 2022

Numerical Analysis of Potential Contaminant Migration from Abandoned In Situ Coal Conversion Reactors

Christopher Otto, Svenja Steding, Morgan Tranter, Torsten Gorka, Mária Hámor-Vidó, Wioleta Basa, Krzysztof Kapusta, István Kalmár, and Thomas Kempka

Related authors

Environmental hazard quantification toolkit based on modular numerical simulations
Morgan Tranter, Svenja Steding, Christopher Otto, Konstantina Pyrgaki, Mansour Hedayatzadeh, Vasilis Sarhosis, Nikolaos Koukouzas, Georgios Louloudis, Christos Roumpos, and Thomas Kempka
Adv. Geosci., 58, 67–76,,, 2022
Short summary

Cited articles

Beath, A., Craig, S., Littleboy, A., Mark, R., and Mallett, C.: Underground Coal Gasification: Evaluating Environmental Barriers, Prog. Energ. Combust., 39, 189–214, 2004. a
Blinderman, M. S., Saulov, D. N., and Klimenko, A. Y.: Forward and reverse combustion linking in underground coal gasification, Energy, 33, 446–454,, 2008. a
Burton, E., Friedmann, J., and Upadhye, R.: Best Practices in Underground Coal Gasification, Contract No. W-7405-Eng-48, Lawrence Livermore National Laboratory, Livermore, CA, USA, 2006. a, b
Creedy, D. P. and Garner, K.: Clean Energy from Underground Coal Gasification in China, DTI Cleaner Coal Technology Transfer Programme, Report No. COAL R250 DTI/Pub URN 03/1611, 2004. a
European Commission, Directorate-General for Research and Innovation, Stańczyk, K., Kapusta, K., and Świa̧drowski, J.: Hydrogen-oriented underground coal gasification for Europe (HUGE), Publications Office,, 2012. a
Short summary
For a potential utilisation of coal resources located in Hungary, an assessment of groundwater pollution resulting from a water-borne contaminant pool has been undertaken. A sensitivity analysis was carried out by means of numerical simulations. Simulation results demonstrate that fluid flow via the regional faults is the main driver for a potential contamination of shallow groundwater aquifers. A parameter correlation analysis is presented.