Numerical Analysis of Potential Contaminant Migration from Abandoned In Situ Coal Conversion Reactors
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Svenja Steding
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Morgan Tranter
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Torsten Gorka
DMT GmbH & Co. KG, Am TÜV 1, 45307 Essen, Germany
Mária Hámor-Vidó
Department of Geology and Meteorology, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary
Wioleta Basa
Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166 Katowice, Poland
Krzysztof Kapusta
Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166 Katowice, Poland
István Kalmár
Calamites Ltd., Daraboshaz 3, Nagymanyok 7355, Hungary
Thomas Kempka
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Related authors
Morgan Tranter, Svenja Steding, Christopher Otto, Konstantina Pyrgaki, Mansour Hedayatzadeh, Vasilis Sarhosis, Nikolaos Koukouzas, Georgios Louloudis, Christos Roumpos, and Thomas Kempka
Adv. Geosci., 58, 67–76, https://doi.org/10.5194/adgeo-58-67-2022, https://doi.org/10.5194/adgeo-58-67-2022, 2022
Short summary
Short summary
The quantification of the impacts on the environment and human health is a crucial prerequisite for geological sub-surface utilisation projects. With the presented approach, the shortcomings of using conceptually simplified models are substantially reduced, since subsurface complexities are accounted for. The transparency of the assessment basis should generally increase the acceptance of geoengineering projects, considered one of the crucial aspects for geological subsurface utilisation.
Michael Kühn, Vaughan Stagpoole, Graham Paul D. Viskovic, and Thomas Kempka
Adv. Geosci., 65, 1–7, https://doi.org/10.5194/adgeo-65-1-2024, https://doi.org/10.5194/adgeo-65-1-2024, 2024
Short summary
Short summary
Waiwera is a small coastal village located on New Zealand's North Island above a geothermal reservoir. The origin of the warm water is not well understood. An inferred fault zone at the base of the reservoir is thought to channelise the uprising thermal water. The observed characteristic cold and hot water distribution in the system was simulated and the temperature profiles show an improved agreement in the near field around the centre of the reservoir.
Mansour Hedayatzadeh, Vasilis Sarhosis, Torsten Gorka, Mária Hámor-Vidó, and István Kalmár
Adv. Geosci., 58, 93–99, https://doi.org/10.5194/adgeo-58-93-2022, https://doi.org/10.5194/adgeo-58-93-2022, 2022
Short summary
Short summary
This paper presents the implementation of probabilistic analyses to assess environmental risks while improving the productivity of the in situ coal conversion process. Parametric modelling was employed for the Máza–Váralja (Hungary) coal deposit, and parameter uncertainty was undertaken to identify the potential risks to human health and the environment. The outputs of the parametric study focused on assessing reactor stability, fault integrity, surface subsidence, and hydraulic processes.
Morgan Tranter, Svenja Steding, Christopher Otto, Konstantina Pyrgaki, Mansour Hedayatzadeh, Vasilis Sarhosis, Nikolaos Koukouzas, Georgios Louloudis, Christos Roumpos, and Thomas Kempka
Adv. Geosci., 58, 67–76, https://doi.org/10.5194/adgeo-58-67-2022, https://doi.org/10.5194/adgeo-58-67-2022, 2022
Short summary
Short summary
The quantification of the impacts on the environment and human health is a crucial prerequisite for geological sub-surface utilisation projects. With the presented approach, the shortcomings of using conceptually simplified models are substantially reduced, since subsurface complexities are accounted for. The transparency of the assessment basis should generally increase the acceptance of geoengineering projects, considered one of the crucial aspects for geological subsurface utilisation.
Elena Chabab, Michael Kühn, and Thomas Kempka
Adv. Geosci., 58, 47–54, https://doi.org/10.5194/adgeo-58-47-2022, https://doi.org/10.5194/adgeo-58-47-2022, 2022
Short summary
Short summary
The present study, uses density-driven flow and transport models to evaluate mechanisms of saline water intrusion from deep aquifers into the freshwater column used for drinking water supply under different boundary conditions and for a specific site in the German Federal State of Brandenburg. Results show that mainly decreasing groundwater recharge leads to increased and earlier salinisation which highlights the need for waterworks to initiate effective countermeasures quickly and in time.
Michael Kühn, Melissa Präg, Ivy Becker, Christoph Hilgers, Andreas Grafe, and Thomas Kempka
Adv. Geosci., 58, 31–39, https://doi.org/10.5194/adgeo-58-31-2022, https://doi.org/10.5194/adgeo-58-31-2022, 2022
Short summary
Short summary
The geothermal hot water reservoir below the small town of Waiwera in New Zealand has been known to the indigenous Maori for many centuries. Overproduction by European immigrants led to a water level decrease and consequently artesian flow from the wells and the seeps on the beach ceased. The Te Kaunihera o Tāmaki Makaurau Auckland Council established the Waiwera Thermal Groundwater Allocation and Management Plan to allow the geothermal system to recover.
Thomas Kempka, Svenja Steding, and Michael Kühn
Adv. Geosci., 58, 19–29, https://doi.org/10.5194/adgeo-58-19-2022, https://doi.org/10.5194/adgeo-58-19-2022, 2022
Short summary
Short summary
The TRANSPORT Simulation Environment (TRANSPORTSE) was coupled with the geochemical reaction module PHREEQC, providing multiple new features that make it applicable to complex reactive transport problems in various geoscientific fields. Two computationally demanding and complex geochemical benchmarks were used in the present study to successfully verify the code implementation.
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 58, 1–10, https://doi.org/10.5194/adgeo-58-1-2022, https://doi.org/10.5194/adgeo-58-1-2022, 2022
Short summary
Short summary
Porosity-permeability relations are simulated for a precipitation-dissolution cycle in a virtual sandstone. A hysteresis in permeability is observed depending on the geochemical process and dominating reaction regime, whereby permeability varies by more than two orders of magnitude. Controlling parameters for this hysteresis phenomenon are the closure and re-opening of micro-scale flow channels, derived from changes in pore throat diameter and connectivity of the pore network.
Morgan Tranter, Maria Wetzel, Marco De Lucia, and Michael Kühn
Adv. Geosci., 56, 57–65, https://doi.org/10.5194/adgeo-56-57-2021, https://doi.org/10.5194/adgeo-56-57-2021, 2021
Short summary
Short summary
Barite formation is an important factor for many use cases of the geological subsurface because it may change the rock.
In this modelling study, the replacement reaction of celestite to barite is investigated.
The steps that were identified to play a role are celestite dissolution followed by two-step precipitation of barite: spontaneous formation of small crystals and their subsequent growth.
Explicitly including the processes improve the usability of the models for quantified prediction.
Michael Kühn, Natalie C. Nakaten, and Thomas Kempka
Adv. Geosci., 54, 173–178, https://doi.org/10.5194/adgeo-54-173-2020, https://doi.org/10.5194/adgeo-54-173-2020, 2020
Short summary
Short summary
Energy supply in Germany is subject to a profound change. The present paper addresses the German potential of storing excess energy from renewable power sources in the geological subsurface. Wind and solar electricity can be transformed into hydrogen, and with carbon dioxide subsequently into methane. The current potential for combined subsurface storage of methane and carbon dioxide allows to store far more than required to date and is estimated to provide the entire coverage in 2050.
Thomas Kempka
Adv. Geosci., 54, 67–77, https://doi.org/10.5194/adgeo-54-67-2020, https://doi.org/10.5194/adgeo-54-67-2020, 2020
Short summary
Short summary
The TRANsport Simulation Environment (TRANSE) has been developed to improve the flexibility for coupling chemical libraries with fluid flow and the transport of heat and chemical species. The Python-based implementation of TRANSE enables users not experienced in low-level programming languages (e.g., C, C++ or FORTRAN) to undertake required code modifications and integrate chemical modules as required. TRANSE has been successfully verified against benchmarks on density-driven fluid flow.
Maria Wetzel, Thomas Kempka, and Michael Kühn
Adv. Geosci., 54, 33–39, https://doi.org/10.5194/adgeo-54-33-2020, https://doi.org/10.5194/adgeo-54-33-2020, 2020
Elena Tillner, Maria Langer, Thomas Kempka, and Michael Kühn
Hydrol. Earth Syst. Sci., 20, 1049–1067, https://doi.org/10.5194/hess-20-1049-2016, https://doi.org/10.5194/hess-20-1049-2016, 2016
Short summary
Short summary
The degree of shallow aquifer salinisation triggered by fluid injection into deeper brine-bearing aquifers and brine upward migration through hydraulically conductive faults strongly depends on the regional depth of the freshwater-saltwater boundary, since displaced brines originate only from the upper fault damage zones in the study area. The highest local salinity increase in shallow aquifers occurs in case of closed model boundaries and low fault damage zone volumes.
M. De Lucia, T. Kempka, and M. Kühn
Geosci. Model Dev., 8, 279–294, https://doi.org/10.5194/gmd-8-279-2015, https://doi.org/10.5194/gmd-8-279-2015, 2015
Cited articles
Beath, A., Craig, S., Littleboy, A., Mark, R., and Mallett, C.: Underground Coal Gasification: Evaluating Environmental Barriers, Prog. Energ. Combust., 39, 189–214, 2004. a
Blinderman, M. S., Saulov, D. N., and Klimenko, A. Y.: Forward and reverse
combustion linking in underground coal gasification, Energy, 33, 446–454,
https://doi.org/10.1016/j.energy.2007.10.004, 2008. a
Creedy, D. P. and Garner, K.: Clean Energy from Underground Coal Gasification in China, DTI Cleaner Coal Technology Transfer Programme, Report No. COAL R250 DTI/Pub URN 03/1611, 2004. a
European Commission, Directorate-General for Research and Innovation, Stańczyk, K., Kapusta, K., and Świa̧drowski, J.: Hydrogen-oriented underground coal gasification for Europe (HUGE), Publications Office, https://doi.org/10.2777/9857, 2012. a
Friedmann, S. J., Upadhye, R., and Kong, F. M.: Prospects for underground coal gasification in carbon-constrained world, Enrgy. Proced., 1, 4551–4557, 2009. a
Humenick, M. and Mattox, C. F.: Groundwater pollutants from underground coal gasification, Water Res., 12, 463–469, https://doi.org/10.1016/0043-1354(78)90153-7, 1978. a
IHCP: PHENOL – Summary Risk Assessment Report, European Chemicals Bureau, Institute for Health and Consumer Protection, https://echa.europa.eu/documents/10162/3e04f30d-9953-4824-ba04-defa32a130fa (last access: 30 March 2022), 2006. a
Kapusta, K. and Stańczyk, K.: Pollution of water during underground coal gasification of hard coal and lignite, Fuel, 90, 1927–1934,
https://doi.org/10.1016/j.fuel.2010.11.025, 2011. a
Kempka, T.: Verification of a Python-based TRANsport Simulation Environment for density-driven fluid flow and coupled transport of heat and chemical species, Adv. Geosci., 54, 67–77, https://doi.org/10.5194/adgeo-54-67-2020, 2020. a
Kempka, T., Fernández-Steeger, T., Li, D. Y., Schulten, M., Schlüter, R., and Krooss, B. M.: Carbon dioxide sorption capacities of
coal gasification residues, Environ. Sci. Technol., 45, 1719–1723, https://doi.org/10.1021/es102839x, 2011. a
Kempka, T., Steding, S., and Kühn, M.: Verification of TRANSPORT Simulation Environment coupling with PHREEQC for reactive transport modelling, Adv. Geosci., 58, 19–29, https://doi.org/10.5194/adgeo-58-19-2022, 2022. a
Lemmon, E. W., Bell, I. H., Huber, M. L., and McLinden, M. O.:
Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST
Standard Reference Database, 69, https://doi.org/10.18434/T4D303, 2021. a
Liu, S.-Q., Li, J.-G., Mei, M., and Dong, D.-L.: Groundwater Pollution from Underground Coal Gasification, Journal of China University of Mining and Technology, 17, 467–472, https://doi.org/10.1016/S1006-1266(07)60127-8, 2007. a
Nakaten, N. C. and Kempka, T.: Techno-Economic Comparison of Onshore and
Offshore Underground Coal Gasification End-Product Competitiveness,
Energies, 12, 3252, https://doi.org/10.3390/en12173252, 2019.
a
Otto, C. and Kempka, T.: Synthesis Gas Composition Prediction for Underground Coal Gasification Using a Thermochemical Equilibrium Modeling Approach, Energies, 13, 1171, https://doi.org/10.3390/en13051171, 2020. a
Püspöki, Z., Forgács, Z., Kovács, Z., Kovács, E., Soós-Kablár, J., Jäger, L., Pusztafalvi, J., Kovács, Z., Demeter, G., McIntosh, R., Buday, T., Kozák, M., and Verböci, J.: Stratigraphy and deformation history of the Jurassic coal bearing series in the Eastern Mecsek (Hungary), Int. J. Coal Geol., 102, 35–51, 2012. a
Roddy, D. and Younger, P.: Underground coal gasification with CCS: A pathway to decarbonising industry, Energ. Environ. Sci., 3, 400–407,
https://doi.org/10.1039/b921197g, 2010. a, b
Sarhosis, V., Yang, D., Sheng, Y., and Kempka, T.: Coupled Hydro-thermal Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage, Enrgy. Proced., 40, 428–436, https://doi.org/10.1016/j.egypro.2013.08.049, 2013. a
Shu, D. M. and Bhattacharyya, A. K.: Prediction of sub-surface subsidence movements due to underground coal mining, Geotechnical and Geological Engineering, 11, 221–234, https://doi.org/10.1007/BF00466365, 1993. a
Sury, M., White, M., Kirton, J., Carr, P., and Woodbridge, R.: Review of Environmental Issues of Underground Coal Gasification, Tech. Rep. Report No. COAL R272 DTI/Pub URN 04/1880, http://large.stanford.edu/courses/2014/ph240/cui2/docs/file19154.pdf (last access: 30 March 2022), 2004. a
Thorsness, C. and Rozsa, R.: In-Situ Coal Gasification: Model Calculations and Laboratory Experiments, SPE J., 18, 105–116, https://doi.org/10.2118/6182-PA, 1978. a
Short summary
For a potential utilisation of coal resources located in Hungary, an assessment of groundwater pollution resulting from a water-borne contaminant pool has been undertaken. A sensitivity analysis was carried out by means of numerical simulations. Simulation results demonstrate that fluid flow via the regional faults is the main driver for a potential contamination of shallow groundwater aquifers. A parameter correlation analysis is presented.
For a potential utilisation of coal resources located in Hungary, an assessment of groundwater...