Stochastic noise modelling of kinematic orbit positions in the Celestial Mechanics Approach
Martin Lasser
CORRESPONDING AUTHOR
Astronomical Institute, University of Bern, Bern, Switzerland
Ulrich Meyer
Astronomical Institute, University of Bern, Bern, Switzerland
Daniel Arnold
Astronomical Institute, University of Bern, Bern, Switzerland
Adrian Jäggi
Astronomical Institute, University of Bern, Bern, Switzerland
Related authors
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020, https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
Martin Lasser, Sungmin O, and Ulrich Foelsche
Atmos. Meas. Tech., 12, 5055–5070, https://doi.org/10.5194/amt-12-5055-2019, https://doi.org/10.5194/amt-12-5055-2019, 2019
Short summary
Short summary
This paper evaluates the rain rate estimates from the Global Precipitation Measurement (GPM) mission's radar instrument by comparing them to the data of the WegenerNet, a local-scale high-resolution network of meteorological stations. Our results show that the GPM-DPR estimates basically match with the WegenerNet measurements, but absolute quantities are biased.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Andreas Kvas, Jan Martin Brockmann, Sandro Krauss, Till Schubert, Thomas Gruber, Ulrich Meyer, Torsten Mayer-Gürr, Wolf-Dieter Schuh, Adrian Jäggi, and Roland Pail
Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021, https://doi.org/10.5194/essd-13-99-2021, 2021
Short summary
Short summary
Earth's gravity field provides invaluable insights into the state and changing nature of our planet. GOCO06s combines over 1 billion measurements from 19 satellites to produce a global gravity field model. The combination of different observation principles allows us to exploit the strengths of each satellite mission and provide a high-quality data set for Earth and climate sciences.
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020, https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
Cyril Kobel, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 27–37, https://doi.org/10.5194/adgeo-50-27-2019, https://doi.org/10.5194/adgeo-50-27-2019, 2019
Short summary
Short summary
In this article we analyze the benefit of computing a combined solution from individual orbit solutions for the low Earth orbiting satellite Sentinel-3A. The selected combination scheme for calculating the combined solution is Variance Component Estimation. It could be shown that a combination of individual solutions can be beneficial in terms of Satellite Laser Ranging validation. In our opinion the findings are well transferable to other satellite missions.
Martin Lasser, Sungmin O, and Ulrich Foelsche
Atmos. Meas. Tech., 12, 5055–5070, https://doi.org/10.5194/amt-12-5055-2019, https://doi.org/10.5194/amt-12-5055-2019, 2019
Short summary
Short summary
This paper evaluates the rain rate estimates from the Global Precipitation Measurement (GPM) mission's radar instrument by comparing them to the data of the WegenerNet, a local-scale high-resolution network of meteorological stations. Our results show that the GPM-DPR estimates basically match with the WegenerNet measurements, but absolute quantities are biased.
Lucas Schreiter, Daniel Arnold, Veerle Sterken, and Adrian Jäggi
Ann. Geophys., 37, 111–127, https://doi.org/10.5194/angeo-37-111-2019, https://doi.org/10.5194/angeo-37-111-2019, 2019
Short summary
Short summary
Comparing Swarm GPS-only gravity fields to the ultra-precise GRACE K-Band gravity field schematic errors occurs around the geomagnetic equator. Due to the end of the GRACE mission, and the gap to the GRACE-FO mission, only Swarm can provide a continuous time series of gravity fields. We present different and assess different approaches to remove the schematic errors and thus improve the quality of the Swarm gravity fields.
Christiane Meyer, Ulrich Meyer, Andreas Pflitsch, and Valter Maggi
The Cryosphere, 10, 879–894, https://doi.org/10.5194/tc-10-879-2016, https://doi.org/10.5194/tc-10-879-2016, 2016
Short summary
Short summary
In the paper a new method to calculate airflow speeds in static ice caves by using air temperature data is presented. As most study sites are in very remote places, where it is often not possible to use sonic anemometers and other devices for the analysis of the cave climate, we show how one can use the given database for calculating airflow speeds. Understanding/quantifying all elements of the specific cave climate is indispensable for understanding the evolution of the ice body in ice caves.
Cited articles
Baur, O., Bock, H., Höck, E., Jäggi, A., Krauss, S., Mayer-Gürr, T.,
Reubelt, T., Siemes, C., and Zehentner, N.: Comparison of GOCE-GPS gravity
fields derived by different approaches, J. Geodesy, 88, 959–973,
https://doi.org/10.1007/s00190-014-0736-6, 2014. a
Beutler, G., Jäggi, A., Mervart, L., and Meyer, U.: The celestial mechanics
approach: theoretical foundations, J. Geodesy, 84, 605–624,
https://doi.org/10.1007/s00190-010-0401-7, 2010. a
Bock, H., Dach, R., Jäggi, A., and Beutler, G.: High-rate GPS clock
corrections from CODE: support of 1 Hz applications, J. Geodesy, 83,
1083, https://doi.org/10.1007/s00190-009-0326-1, 2009. a
Dach, R., Brockmann, E., Schaer, S., Beutler, G., Meindl, M., Prange, L., Bock,
H., Jäggi, A., and Ostini, L.: GNSS processing at CODE: status report,
Jo. Geodesy, 83, 353–365, https://doi.org/10.1007/s00190-008-0281-2, 2009. a
Dach, R., Lutz, S., Walser, P., and Fridez, F.: Bernese GPS software version
5.2, Documentation, University of Bern, Bern Open Publishing,
https://doi.org/10.7892/boris.72297, 2015. a
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C.,
Esselborn, S., König, R., and Flechtner, F.: A new high-resolution model of
non-tidal atmosphere and ocean mass variability for de-aliasing of satellite
gravity observations: AOD1B RL06, Geophys. J. Int., 211,
263–269, https://doi.org/10.1093/gji/ggx302, 2017. a
Drinkwater, M., Haagmans, R., Muzi, D., Popescu, A., Floberghagen, R., Kern,
M., and Fehringer, M.: The GOCE gravity mission: ESA's first core explorer,
1–7, ESA SP-627, Frascati, Italy, 2006. a
Etten, W. V.: Introduction to Random Signals and Noise, John Wiley & Sons, Hoboken, NJ, USA,
2005. a
Flechtner, F., Morton, P., Watkins, M., and Webb, F.: Status of the GRACE
follow-on mission, Gravity, Geoid and Height Systems, IAG Symposia,
117–121, https://doi.org/10.1007/978-3-319-10837-7_15, 2013. a
Folkner, W. M., Williams, J. G., and Boggs, D. H.: The Planetary and Lunar
Ephemeris DE 421, Interplanetary Network Progress Report, 41–178, Jet Propulsion Laboratory, Pasadena, California, 2009. a
Friis-Christensen, E., Lühr, H., Knudsen, D., and Haagmans, R.: Swarm – An
Earth Observation Mission investigating Geospace, Adv. Space Res.,
41, 210–216, https://doi.org/10.1016/j.asr.2006.10.008, 2006. a
Gerlach, C., Földvary, L., Švehla, D., Gruber, T., Wermuth, M., Sneeuw, N.,
Frommknecht, B., Oberndorfer, H., Peters, T., Rothacher, M., Rummel, R., and
Steigenberger, P.: A CHAMP-only gravity field model from kinematic orbits
using the energy integral, Geophys. Res. Lett., 30,
https://doi.org/10.1029/2003GL018025, 2003. a
GFZ/JPL: GRACE, available at: ftp://isdcftp.gfz-potsdam.de/grace-fo/, last access: 2 September 2020. a
Jäggi, A., Beutler, G., Prange, L., Dach, R., and Mervart, L.: Assessment of
GPS-only observables for Gravity Field Recovery from GRACE, Observing our
Changing Earth, 133, 113–123, https://doi.org/10.1007/978-3-540-85426-5_14, 2009a. a
Jäggi, A., Dach, R., Montenbruck, O., Hugentobler, U., Bock, H., and Beutler,
G.: Phase center modeling for LEO GPS receiver antennas and its impact on
precise orbit determination, J. Geodesy, 83, 1145–1162,
https://doi.org/10.1007/s00190-009-0333-2, 2009b. a
Jäggi, A., Bock, H., Prange, L., Meyer, U., and Beutler, G.: GPS-only gravity
field recovery with GOCE, CHAMP, and GRACE, Adv. Space Res., 47,
1020–1028, https://doi.org/10.1016/j.asr.2010.11.008, 2011a. a, b
Jäggi, A., Bock, H., Meyer, U., Beutler, G., and van den IJssel, J.: GOCE:
assessment of GPS-only gravity field determination, J. Geodesy, 89,
33–48, https://doi.org/10.1007/s00190-014-0759-z, 2015. a
Jäggi, A., Dahle, C., Arnold, D., Bock, H., Meyer, U., Beutler, G., and
van den IJssel, J.: Swarm kinematic orbits and gravity fields from 18 months
of GPS data, Adv. Space Res., 57, 218–233,
https://doi.org/10.1016/j.asr.2015.10.035, 2016. a
Lück, C., Kusche, J., Rietbroek, R., and Löcher, A.: Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits, Solid Earth, 9, 323–339, https://doi.org/10.5194/se-9-323-2018, 2018. a
Mayer-Gürr, T., Kvas, A., Klinger, B., Rieser, D., Zehentner, N., Pail, R.,
Gruber, T., Fecher, T., Rexer, M., Schuh, W.-D., Kusche, J., Brockmann,
J.-M., Loth, I., Müller, S., Eicker, A., Schall, J., Baur, O., Höck, E.,
Krauss, S., and Maier, A.: The new combined satellite only model GOCO05s, Geophys. Res. Abstr.,
EGU2015-12364, EGU General Assembly 2015, Vienna, Austria,
https://doi.org/10.13140/RG.2.1.4688.6807, 2015. a
Meyer, U., Jean, Y., Kvas, A., Dahle, C., Lemoine, J. M., and Jäggi, A.:
Combination of GRACE monthly gravity fields on the normal equation level,
J. Geodesy, 93, 1645–1658, https://doi.org/10.1007/s00190-019-01274-6, 2019.
a
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development
and evaluation of the Earth Gravitational Model 2008 (EGM2008), J.
Geophys. Res.-Sol. Ea., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012. a
Petit, G. and Luzum, B.: IERS Conventions (2010), IERS Technical Note No. 36,
Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main,
2010. a
Prange, L., Jäggi, A., Beutler, G., Dach, R., and Mervart, L.: Gravity Field
Determination at the AIUB – the Celestial Mechanics Approach, Observing our
Changing Earth, 133, 353–362, https://doi.org/10.1007/978-3-540-85426-5_42, 2009. a
Reigber, C., Lühr, H., and Schwintzer, P.: Status of the CHAMP Mission,
Towards an Integrated Global Geodetic Observing System (IGGOS), IAG Symposia,
63–65, https://doi.org/10.1007/978-3-642-59745-9, 1998. a
Savcenko, R. and Bosch, W.: EOT11a – a new tide model from Multi-Mission
Altimetry, OSTST Meeting, 19–21 October 2011, San Diego, 2011. a
Sušnik, A., Dach, R., Villiger, A., Maier, A., Arnold, D., Schaer, S., and
Jäggi, A.: CODE reprocessing product series, CODE_REPRO_2015, [Dataset], BORIS,
https://doi.org/10.7892/boris.80011, 2016. a
Sušnik, A., Grahsl, A., Arnold, D., Villiger, A., Dach, R., Beutler, G., and
Jäggi, A.: Validation of the EGSIEM-REPRO GNSS Orbits and Satellite Clock
Corrections, Remote Sensing, 12, 2322, https://doi.org/10.3390/rs12142322, 2020. a, b
Švehla, D. and Rothacher, M.: Kinematic precise orbit determination for
gravity field determination, A window on the future of geodesy, IAG
Symposia, 128, 181–188, https://doi.org/10.1007/3-540-27432-4_32, 2005. a, b
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL019920, 2004. a
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb,
F. H.: Precise point positioning for the efficient and robust analysis of GPS
data from large networks, J. Geophys. Res.-Sol. Ea., 102,
5005–5017, 1997. a
Short summary
We compute gravity field solutions from kinematic orbit positions of GRACE. These positions are derived from GPS based observations, and hence, they are contaminated by measurement noise. We present three methods of dealing with the noise in the data to obtain not only high-quality gravity field solutions but also an accurate quality information of the gravity fields.
We compute gravity field solutions from kinematic orbit positions of GRACE. These positions are...