Articles | Volume 65
https://doi.org/10.5194/adgeo-65-37-2024
https://doi.org/10.5194/adgeo-65-37-2024
11 Nov 2024
 | 11 Nov 2024

Characterization of artesian flow and heat transition in an ATES research wellbore using DTS monitoring and numerical modelling

Liang Pei, Lioba Virchow, Guido Blöcher, Stefan Kranz, and Ali Saadat

Related authors

Large-scale reservoir modeling of the Vendenheim geothermal site (France)
Javier Abreu-Torres, Gergő Hutka, Guido Blöcher, Mauro Cacace, Vincent Magnenet, and Jean Schmittbuhl
Adv. Geosci., 65, 117–125, https://doi.org/10.5194/adgeo-65-117-2025,https://doi.org/10.5194/adgeo-65-117-2025, 2025
Short summary
Physics-based numerical evaluation of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) in the Upper Jurassic reservoir of the German Molasse Basin
Kalliopi Tzoufka, Guido Blöcher, Mauro Cacace, Daniela Pfrang, and Kai Zosseder
Adv. Geosci., 65, 103–111, https://doi.org/10.5194/adgeo-65-103-2024,https://doi.org/10.5194/adgeo-65-103-2024, 2024
Short summary
Permeability of matrix-fracture systems under mechanical loading – constraints from laboratory experiments and 3-D numerical modelling
Guido Blöcher, Christian Kluge, Harald Milsch, Mauro Cacace, Antoine B. Jacquey, and Jean Schmittbuhl
Adv. Geosci., 49, 95–104, https://doi.org/10.5194/adgeo-49-95-2019,https://doi.org/10.5194/adgeo-49-95-2019, 2019
Short summary
Modelling of multi-lateral well geometries for geothermal applications
Elisabeth Peters, Guido Blöcher, Saeed Salimzadeh, Paul J. P. Egberts, and Mauro Cacace
Adv. Geosci., 45, 209–215, https://doi.org/10.5194/adgeo-45-209-2018,https://doi.org/10.5194/adgeo-45-209-2018, 2018
Short summary

Cited articles

Blöcher, G., Regenspurg, S., Kranz, S., Lipus, M., Pei, L., Norden, B., Reinsch, T., Henninges, J., Siemon, R., Orenczuk, D., Zeilfelderf, S., Scheytt, T., and Saadat, A.: Best practices for characterization of high temperature-aquifer thermal energy storage (HT-ATES) potential using well tests in Berlin (Germany) as an example, Geothermics, 116, 102830, https://doi.org/10.1016/j.geothermics.2023.102830, 2024.  
Doonechaly, N. G., Reinicke, A., Hertrich, M., Plenkers, K., Obermann, A., Fischli, F., Maurer, H., Wiemer, S. and Giardini, D.: Multiphysics monitoring of cementation operation: implications for wellbore integrity and hydrogeological characterization, Environ. Earth Sci. 83, 146, https://doi.org/10.1007/s12665-024-11451-2, 2024. 
Leaf, A. T., Hart, D. J., and Bahr, J. M.: Active thermal tracer tests for improved hydrostratigraphic characterization, Ground water, 50, 726–735, https://doi.org/10.1111/j.1745-6584.2012.00913.x, 2012. 
Lipus, M. P., Reinsch, T., Tobias B. Weisenberger, T. B., Kragset, S., Stefánsson, A., and Bogason, S. G.: Monitoring of a reverse cement job in a hightemperature geothermal environment, Geotherm. Energy, 9, 5, https://doi.org/10.1186/s40517-021-00187-y, 2021. 
Liu, J. R., Han, Y. H., Jia, Q. S., Zhang, L., Liu, M., and Li, Z. G.: Oil-water flowing experiments and water cut range classification approach using distributed acoustic sensing, Spe. J., 29, 1238–1253, https://doi.org/10.2118/218389-PA, 2024. 
Download
Short summary
To operate aquifer thermal energy storages in a sustainable way, we located an artesian aquifer other than the aquifer storage in a research wellbore by analyzing the subsurface temperature as monitored with a fiber optic cable in three artesian flow tests. The positioning of the artesian aquifer was validated via numerical modelling. Analyses of the temperature data and numerical modelling enabled determining the profile of flow velocity, flow rate and the depth interval of inflow.