Contaminants in Urban Stormwater: Barcelona case study
GHS, Institute of Environmental Assessment & Water Research
(IDAEA), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
Diego Schmidlin
GHS, Institute of Environmental Assessment & Water Research
(IDAEA), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
GHS, Institute of Environmental Assessment & Water Research
(IDAEA), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
Laura Scheiber
GHS, Institute of Environmental Assessment & Water Research
(IDAEA), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
Maria José Chesa
Barcelona Cicle de l'Aigua, S.A. (BCASA), Acer 16, 08038, Barcelona,
Spain
Enric Vázquez-Suñé
GHS, Institute of Environmental Assessment & Water Research
(IDAEA), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
Related authors
Laura Scheiber, Marc Teixidó, Rotman Criollo, Francesc Labad, Enric Vázquez-Suñé, María Izquierdo, María José Chesa Marro, and Daniel de Castro
Adv. Geosci., 59, 37–44, https://doi.org/10.5194/adgeo-59-37-2022, https://doi.org/10.5194/adgeo-59-37-2022, 2022
Short summary
Short summary
The knowledge of the aquifer characteristics and its quality together with these vulnerable areas may lead to improve the installation of SUDS, reducing the input of contaminants through these infrastructures. The implementation of this methodology aims to facilitate water users and urban managers to control their potential negative effects on the receiving water body. In addtion, the outcomes of its application may be used to optimize the groundwater management in the city.
Estanislao Pujades, Laura Scheiber, Marc Teixidó, Rotman Criollo, Olha Nikolenko, Victor Vilarrasa, Enric Vázquez-Suñé, and Anna Jurado
Adv. Geosci., 59, 9–15, https://doi.org/10.5194/adgeo-59-9-2022, https://doi.org/10.5194/adgeo-59-9-2022, 2022
Short summary
Short summary
This paper explores the impact of low enthalpy geothermal energy (LEGE) on the behaviour of organic contaminants of emerging concern (CECs). Specifically, we investigate the impact of LEGE on phenazone that is an analgesic drug commonly reported in urban aquifers. CECs pose a risk for the environment and human health, and thus, they must be eliminated to increase the available fresh-water resources in urban areas, where water scarcity is a matter of concern due to the population growth.
Diego Schmidlin, Laura Scheiber, Marc Teixidó, Enric Vázquez, Rotman Criollo, Anna Jurado, Diana Puigserver, Silvia Burdons, and Mónica Enrich
Adv. Geosci., 59, 59–67, https://doi.org/10.5194/adgeo-59-59-2023, https://doi.org/10.5194/adgeo-59-59-2023, 2023
Short summary
Short summary
The demand of water for human consumption in urban areas is crucial where groundwater must be consider a useful resource, but commonly in these context due to anthropic activities these water are highly contaminated. Among these contaminants of special interest are the contaminants of emerging concern which present a high risk to the aquatic environment and human health. We found and study a series of these compounds in Barcelona’s groundwaters and identify some possible origins/sources of them.
Laura Scheiber, Marc Teixidó, Rotman Criollo, Francesc Labad, Enric Vázquez-Suñé, María Izquierdo, María José Chesa Marro, and Daniel de Castro
Adv. Geosci., 59, 37–44, https://doi.org/10.5194/adgeo-59-37-2022, https://doi.org/10.5194/adgeo-59-37-2022, 2022
Short summary
Short summary
The knowledge of the aquifer characteristics and its quality together with these vulnerable areas may lead to improve the installation of SUDS, reducing the input of contaminants through these infrastructures. The implementation of this methodology aims to facilitate water users and urban managers to control their potential negative effects on the receiving water body. In addtion, the outcomes of its application may be used to optimize the groundwater management in the city.
Estanislao Pujades, Laura Scheiber, Marc Teixidó, Rotman Criollo, Olha Nikolenko, Victor Vilarrasa, Enric Vázquez-Suñé, and Anna Jurado
Adv. Geosci., 59, 9–15, https://doi.org/10.5194/adgeo-59-9-2022, https://doi.org/10.5194/adgeo-59-9-2022, 2022
Short summary
Short summary
This paper explores the impact of low enthalpy geothermal energy (LEGE) on the behaviour of organic contaminants of emerging concern (CECs). Specifically, we investigate the impact of LEGE on phenazone that is an analgesic drug commonly reported in urban aquifers. CECs pose a risk for the environment and human health, and thus, they must be eliminated to increase the available fresh-water resources in urban areas, where water scarcity is a matter of concern due to the population growth.
Cited articles
Barcelona City Council: Technical guide to design SUDS in
Barcelona, GUIA TÈCNICA PER AL DISSENY DE SISTEMES DE DRENATGE URBÀ
SOSTENIBLE (SUDS), https://ajuntament.barcelona.cat/ecologiaurbana/sites/default/files/PlecPrescripcionsTecniquesDrenatge_Guia.pdf (last access: Feb 2023), 2020.
Barro, J. R., Ortega, L., Salamero, M., and Escaler, I.: The Spanish
National CSO Measurement Project (Promedsu) as a Base for Real Time Sewer
Management Depending on Water Quality – Barcelona's Case, in: Global
Solutions for Urban Drainage, 1–12, https://doi.org/10.1061/40644(2002)326, 2002.
Björklund, K., Bondelind, M., Karlsson, A., Karlsson, D., and Sokolova,
E.: Hydrodynamic modelling of the influence of stormwater and combined sewer
overflows on receiving water quality: Benzo (a) pyrene and copper risks to
recreational water, J. Environ. Manag., 207, 32–42, 2018.
Brown, J. N. and Peake, B. M.: Sources of heavy metals and polycyclic
aromatic hydrocarbons in urban stormwater runoff, Sci. Total
Environ., 359, 145–155, https://doi.org/10.1016/j.scitotenv.2005.05.016,
2006.
Burant, A., Selbig, W., Furlong, E. T., and Higgins, C. P.: Trace organic
contaminants in urban runoff: Associations with urban land-use, Environ.
Pollut., 242, 2068–2077, https://doi.org/10.1016/j.envpol.2018.06.066, 2018.
Chahal, M. K., Shi, Z., and Flury, M.: Nutrient leaching and copper
speciation in compost-amended bioretention systems, Sci. Total
Environ., 556, 302–309, 2016.
Chevalier, Q., El Hadri, H., Petitjean, P., Bouhnik-Le Coz, M., Reynaud, S.,
Grassl, B., and Gigault, J.: Nano-litter from cigarette butts: Environmental
implications and urgent consideration, Chemosphere, 194, 125–130, 2018.
Clary, J., Jones, J., Leisenring, M., Hobson, P., and
Strecker, E.: International Stormwater BMP Database: 2020 Summary
Statistics, https://bmpdatabase.org/ (last access: February 2023), 2020.
Davis, A. P., Shokouhian, M., and Ni, S.: Loading estimates of lead, copper,
cadmium, and zinc in urban runoff from specific sources, Chemosphere, 44,
997–1009, 2001.
Deng, Y.: Pollution in rainwater harvesting: A challenge for sustainability
and resilience of urban agriculture, Journal of Hazardous Materials Letters,
2, 100037, https://doi.org/10.1016/j.hazl.2021.100037, 2021.
Farnham, I. M., Singh, A. K., Stetzenbach, K. J., and Johannesson, K. H.:
Treatment of nondetects in multivariate analysis of groundwater geochemistry
data, Chemometr. Intell. Lab., 60, 265–281, 2002.
Ferreira, A. J., Soares, D., Serrano, L. M., Walsh, R. P., Dias-Ferreira,
C., and Ferreira, C. S.: Roads as sources of heavy metals in urban areas.
The Covões catchment experiment, Coimbra, Portugal, J. Soils
Sediments, 16, 2622–2639, 2016.
Gasperi, J., Zgheib, S., Cladière, M., Rocher, V., Moilleron, R., and
Chebbo, G.: Priority pollutants in urban stormwater: Part 2 – Case of
combined sewers, Water Res., 46, 6693–6703, 2012.
Göbel, P., Dierkes, C., and Coldewey, W. G.: Storm water runoff
concentration matrix for urban areas, J. Contam. Hydrol., 91,
26–42, 2007.
Goyer, R. A.: Lead toxicity: current concerns, Environ. Health
Perspect., 100, 177–187, 1993.
Grebel, J. E., Mohanty, S. K., Torkelson, A. A., Boehm, A. B., Higgins, C.
P., Maxwell, R. M., Nelson, K. L., and Sedlak, D. L.: Engineered
Infiltration Systems for Urban Stormwater Reclamation, Environ.
Eng. Sci., 30, 437–454, https://doi.org/10.1089/ees.2012.0312, 2013.
Hobbie, S. E., Finlay, J. C., Janke, B. D., Nidzgorski, D. A., Millet, D.
B., and Baker, L. A.: Contrasting nitrogen and phosphorus budgets in urban
watersheds and implications for managing urban water pollution, P.
Natl. Acad. Sci. USA, 114, 4177–4182, 2017.
Horstmeyer, N., Huber, M., Drewes, J. E., and Helmreich, B.: Evaluation of
site-specific factors influencing heavy metal contents in the topsoil of
vegetated infiltration swales, Sci. Total Environ., 560–561, 19–28,
https://doi.org/10.1016/j.scitotenv.2016.04.051, 2016.
Huston, R., Chan, Y. C., Gardner, T., Shaw, G., and Chapman, H.:
Characterisation of atmospheric deposition as a source of contaminants in
urban rainwater tanks, Water Res., 43, 1630–1640, 2009.
Hwang, H.-M., Fiala, M. J., Park, D., and Wade, T. L.: Review of pollutants
in urban road dust and stormwater runoff: part 1. Heavy metals released from
vehicles, International Journal of Urban Sciences, 20, 334–360,
https://doi.org/10.1080/12265934.2016.1193041, 2016.
Karlsson, K., Viklander, M., Scholes, L., and Revitt, M.: Heavy metal
concentrations and toxicity in water and sediment from stormwater ponds and
sedimentation tanks, J. Hazard. Mater., 178, 612–618, 2010.
Kayhanian, M., Suverkropp, C., Ruby, A., and Tsay, K.: Characterization and
prediction of highway runoff constituent event mean concentration, J.
Environ. Manage., 85, 279–295, 2007.
Liu, A., Egodawatta, P., Guan, Y., and Goonetilleke, A.: Influence of
rainfall and catchment characteristics on urban stormwater quality, Sci.
Total Environ., 444, 255–262, 2013.
Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S.,
Hanasaki, N., Wada, Y., Zhang, X., and Zheng, C.: Water scarcity assessments
in the past, present, and future, Earths Future, 5, 545–559, 2017.
Llasat, M. D. C.: The vulnerability in Catalonia and the social perception,
La Houille Blanche, 90, 71–75, https://doi.org/10.1051/lhb:200406009, 2004.
Llopart-Mascaró, A., Ruiz, R., Martínez, M., Malgrat, P.,
Rusiñol, M., Gil, A., Suárez, J., Puertas, J., del Rio, H., and
Paraira, M.: Analysis of rainwater quality. Towards a sustainable rainwater
management in urban environments-Sostaqua Project, in: 7ème
Conférence internationale sur les techniques et stratégies durables
pour la gestion des eaux urbaines par temps de pluie/7th International
Conference on sustainable techniques and strategies for urban water
management, 1–10, hal-03296542, 2010.
Lundy, L., Ellis, J. B., and Revitt, D. M.: Risk prioritisation of
stormwater pollutant sources, Water Res., 46, 6589–6600, 2012.
Luthy, R. G. and Sedlak, D. L.: Urban Water-Supply Reinvention, Daedalus,
144, 72–82, https://doi.org/10.1162/DAED_a_00343, 2015.
Martínez-Gomariz, E., Forero-Ortiz, E., Russo, B., Locatelli, L.,
Guerrero-Hidalga, M., Yubero, D., and Castan, S.: A novel expert
opinion-based approach to compute estimations of flood damage to property in
dense urban environments. Barcelona case study, J. Hydrol., 598,
126244, https://doi.org/10.1016/j.jhydrol.2021.126244, 2021.
Müller, A., Österlund, H., Marsalek, J., and Viklander, M.: The
pollution conveyed by urban runoff: a review of sources, Sci.
Total Environ., 709, 136125, https://doi.org/10.1016/j.scitotenv.2019.136125, 2020.
Nawrot, N., Wojciechowska, E., Rezania, S., Walkusz-Miotk, J., and Pazdro,
K.: The effects of urban vehicle traffic on heavy metal contamination in
road sweeping waste and bottom sediments of retention tanks, Sci.
Total Environ., 749, 141511,
https://doi.org/10.1016/j.scitotenv.2020.141511, 2020.
Opher, T. and Friedler, E.: Factors affecting highway runoff quality, Urban
Water J., 7, 155–172, https://doi.org/10.1080/15730621003782339, 2010.
Pitt, R., Field, R., Lalor, M., and Brown, M.: Urban stormwater toxic
pollutants: assessment, sources, and treatability, Water Environ.
Res., 67, 260–275, 1995.
Pitt, R., Maestre, A., and Clary, J.: The National Stormwater Quality
Database (NSQD), Version 4.02, Department of Civil and Environmental
Engineering, 2018.
Querol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C.,
Harrison, R. M., Buringh, E., ten Brink, H. M., Lutz, M., Bruckmann, P.,
Straehl, P., and Schneider, J.: Speciation and origin of PM10 and PM2.5 in
selected European cities, Atmos. Environ., 38, 6547–6555,
https://doi.org/10.1016/j.atmosenv.2004.08.037, 2004.
Rehman, M., Liu, L., Wang, Q., Saleem, M. H., Bashir, S., Ullah, S., and
Peng, D.: Copper environmental toxicology, recent advances, and future
outlook: a review., Environ. Sci. Pollut. Res. Int., 26, 18003–18016,
https://doi.org/10.1007/s11356-019-05073-6, 2019.
Rodriguez, R., Llasat, M.-C., and Wheeler, D.: Analysis of the Barcelona
precipitation series 1850–1991, Int. J. Climatol., 19, 787–801, 1999.
Rueda, S.: Superblocks for the design of new cities and renovation of
existing ones: Barcelona's case, Integrating Human Health into Urban and
Transport Planning: A Framework, 135–153, https://doi.org/10.1007/978-3-319-74983-9_8, ISBN 978-3-319-74982-2, 2019.
Spahr, S., Teixidó, M., Sedlak, D. L., and Luthy, R. G.: Hydrophilic
trace organic contaminants in urban stormwater: occurrence, toxicological
relevance, and the need to enhance green stormwater infrastructure,
Environ. Sci.-Water Res. Technol., 6, 15–44, https://doi.org/10.1039/C9EW00674E, 2020.
Trowsdale, S. A. and Simcock, R.: Urban stormwater treatment using
bioretention, J. Hydrol., 397, 167–174, 2011.
Tubau, I., Vázquez-Suñé, E., Carrera, J., Valhondo, C., and
Criollo, R.: Quantification of groundwater recharge in urban environments,
Sci. Total Environ., 592, 391–402,
https://doi.org/10.1016/j.scitotenv.2017.03.118, 2017.
US EPA: United States Environmental Protection Agency (USEPA):
Stormwater Discharges from Municipal Sources, https://www.epa.gov/npdes/stormwater-discharges-municipal-sources-resources
(last access: February 2023), 2010.
Wei, J., Tu, C., Yuan, G., Zhou, Y., Wang, H., and Lu, J.: Limited Cu(II)
binding to biochar DOM: Evidence from C K-edge NEXAFS and EEM-PARAFAC
combined with two-dimensional correlation analysis, Sci. Total
Environ., 701, 134919, https://doi.org/10.1016/j.scitotenv.2019.134919,
2020.
Werbowski, L. M., Gilbreath, A. N., Munno, K., Zhu, X., Grbic, J., Wu, T.,
Sutton, R., Sedlak, M. D., Deshpande, A. D., and Rochman, C. M.: Urban
stormwater runoff: a major pathway for anthropogenic particles, black
rubbery fragments, and other types of microplastics to urban receiving
waters, ACS ES&T Water, 1, 1420–1428, 2021.
Wicke, D., Matzinger, A., Sonnenberg, H., Caradot, N., Schubert, R.-L.,
Dick, R., Heinzmann, B., Dünnbier, U., von Seggern, D., and Rouault, P.:
Micropollutants in urban stormwater runoff of different land uses, Water,
13, 1312, https://doi.org/10.3390/w13091312, 2021.
Yu, Q., Yin, H., Wang, K., Dong, H., and Hou, D.: Adaptive Detection Method
for Organic Contamination Events in Water Distribution Systems Using the
UV-Vis Spectrum Based on Semi-Supervised Learning, Water, 10, 1566,
https://doi.org/10.3390/w10111566, 2018.
Zhu, P., Knoop, O., and Helmreich, B.: Interaction of heavy metals and
biocide/herbicide from stormwater runoff of buildings with dissolved organic
matter, Sci. Total Environ., 814, 152599,
https://doi.org/10.1016/j.scitotenv.2021.152599, 2022.
Short summary
Stormwater could augment our over-drafted urban groundwater resources. Therefore, it is of the utmost importance to fully understand stormwater contaminant presence, transport, and fate in the built environment to design novel or improve conventional treatment systems. Preliminary results have confirmed presence of toxic metals in Barcelona urban runoff (with significant differences depending on the catchment areas), along with decreased metal concentrations at green infrastructure outlets.
Stormwater could augment our over-drafted urban groundwater resources. Therefore, it is of the...