Statistical approach to assess radon-222 long-range atmospheric transport modelling and its associated gamma dose rate peaks
IRSN, Institute for Radiation Protection and Nuclear Safety,
PSE-SANTE, SESUC, BMCA, Fontenay-aux-Roses, 92260, France
Khadija Meddouni
IRSN, Institute for Radiation Protection and Nuclear Safety,
PSE-SANTE, SESUC, BMCA, Fontenay-aux-Roses, 92260, France
Denis Quélo
IRSN, Institute for Radiation Protection and Nuclear Safety,
PSE-SANTE, SESUC, BMCA, Fontenay-aux-Roses, 92260, France
Thierry Doursout
IRSN, Institute for Radiation Protection and Nuclear Safety,
PSE-SANTE, SESUC, BMCA, Fontenay-aux-Roses, 92260, France
Sonia Chuzel
IRSN, Institute for Radiation Protection and Nuclear Safety, PSE-ENV, SIRSE, LTD, Le Vésinet, 78116, France
Related authors
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
A. Quérel, P. Lemaitre, M. Monier, E. Porcheron, A. I. Flossmann, and M. Hervo
Atmos. Meas. Tech., 7, 1321–1330, https://doi.org/10.5194/amt-7-1321-2014, https://doi.org/10.5194/amt-7-1321-2014, 2014
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Anthony C. Jones, Adrian Hill, John Hemmings, Pascal Lemaitre, Arnaud Quérel, Claire L. Ryder, and Stephanie Woodward
Atmos. Chem. Phys., 22, 11381–11407, https://doi.org/10.5194/acp-22-11381-2022, https://doi.org/10.5194/acp-22-11381-2022, 2022
Short summary
Short summary
As raindrops fall to the ground, they capture aerosol (i.e. below-cloud scavenging or BCS). Many different BCS schemes are available to climate models, and it is unclear what the impact of selecting one scheme over another is. Here, various BCS models are outlined and then applied to mineral dust in climate model simulations. We find that dust concentrations are highly sensitive to the BCS scheme, with dust atmospheric lifetimes ranging from 5 to 44 d.
A. Quérel, P. Lemaitre, M. Monier, E. Porcheron, A. I. Flossmann, and M. Hervo
Atmos. Meas. Tech., 7, 1321–1330, https://doi.org/10.5194/amt-7-1321-2014, https://doi.org/10.5194/amt-7-1321-2014, 2014
O. Saunier, A. Mathieu, D. Didier, M. Tombette, D. Quélo, V. Winiarek, and M. Bocquet
Atmos. Chem. Phys., 13, 11403–11421, https://doi.org/10.5194/acp-13-11403-2013, https://doi.org/10.5194/acp-13-11403-2013, 2013
Cited articles
Arnold, D., Vargas, A., and Ortega, X.: Analysis of outdoor radon progeny
concentration measured at the Spanish radioactive aerosol automatic
monitoring network, Appl. Radiat. Isotop., 67, 833–838, https://doi.org/10.1016/j.apradiso.2009.01.042, 2009.
Arnold, D., Vargas, A., Vermeulen, A. T., Verheggen, B., and Seibert, P.:
Analysis of radon origin by backward atmospheric transport modelling, Atmos. Environ., 44, 494–502, https://doi.org/10.1016/j.atmosenv.2009.11.003, 2010.
Barbosa, S. M., Miranda, P., and Azevedo, E. B.: Short-term variability of
gamma radiation at the ARM Eastern North Atlantic facility (Azores), J. Environ. Radioact., 172, 218–231, https://doi.org/10.1016/j.jenvrad.2017.03.027, 2017.
Bossew, P., Cinelli, G., Hernández-Ceballos, M., Cernohlawek, N., Gruber, V., Dehandschutter, B., Menneson, F., Bleher, M., Stöhlker, U., Hellmann, I., Weiler, F., Tollefsen, T., Tognoli, P. V., and de Cort, M.: Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate, J. Environ. Radioact., 166, 296–308, https://doi.org/10.1016/j.jenvrad.2016.02.013, 2017.
Bottardi, C., Albéri, M., Baldoncini, M., Chiarelli, E., Montuschi, M.,
Raptis, K. G. C., Serafini, A., Strati, V., and Mantovani, F.: Rain rate and
radon daughters' activity, Atmos. Environ., 238, 117728,
https://doi.org/10.1016/j.atmosenv.2020.117728, 2020.
Eckerman, K. F. and Ryman, J. C.: Federal guidance report no. 12: External
exposure to radionuclides in air, water, and soil, US Environmental Protection Agency, Oak Ridge, Tennessee, USA, https://www.epa.gov/radiation/federal-guidance-report-no-12-external-exposure-radionuclides (last access: 21 July 2022), 1993.
Eslinger, P. W., Bowyer, T. W., Achim, P., Chai, T., Deconninck, B., Freeman, K., Generoso, S., Hayes, P., Heidmann, V., Hoffman, I., Kijima, Y., Krysta, M., Malo, A., Maurer, C., Ngan, F., Robins, P., Ross, J. O., Saunier, O., Schlosser, C., Schöppner, M., Schrom, B. T., Seibert, P., Stein, A. F., Ungar, K., and Yi, J.: International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station, J. Environ. Radioact., 157, 41–51, https://doi.org/10.1016/j.jenvrad.2016.03.001, 2016.
Fujinami, N.: Observational study of the scavenging of radon daughters by
precipitation from the atmosphere, Environ. Int., 22, 181–185, https://doi.org/10.1016/S0160-4120(96)00106-7, 1996.
Griffiths, A. D., Zahorowski, W., Element, A., and Werczynski, S.: A map of
radon flux at the Australian land surface, Atmos. Chem. Phys., 10, 8969–8982, https://doi.org/10.5194/acp-10-8969-2010, 2010.
Groëll, J., Quélo, D., and Mathieu, A.: Sensitivity analysis of the modelled deposition of 137 Cs on the Japanese land following the Fukushima accident, Int. J. Environ. Pollut., 55, 67–75, https://doi.org/10.1504/ijep.2014.065906, 2014.
Grossi, C., Chambers, S. D., Llido, O., Vogel, F. R., Kazan, V., Capuana, A., Werczynski, S., Curcoll, R., Delmotte, M., Vargas, A., Morguí, J.-A., Levin, I., and Ramonet, M.: Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors, Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, 2020.
Heiskanen, J., Brümmer, C., Buchmann, N., Calfapietra, C., Chen, H., Gielen, B., Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens, I. A., Jordan, A., Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B., Lankreijer, H., Levin, I., Linderson, M.-L., Loustau, D., Merbold, L., Myhre, C. L., Papale, D., Pavelka, M., Pilegaard, K., Ramonet, M., Rebmann, C., Rinne, J., Rivier, L., Saltikoff, E., Sanders, R., Steinbacher, M., Steinhoff, T., Watson, A., Vermeulen, A. T., Vesala, T., Vítková, G., and Kutsch, W.: The Integrated Carbon Observation System in Europe, B. Am. Meteorol. Soc., 1, 1–54, https://doi.org/10.1175/BAMS-D-19-0364.1, 2021.
ICRP: Radionuclide Transformations – Energy and Intensity of Emissions,
https://www.icrp.org/publication.asp?id=ICRP Publication 38 (last access: 21 July 2022), 1983.
Ielsch, G., Cuney, M., Buscail, F., Rossi, F., Leon, A., and Cushing, M. E.:
Estimation and mapping of uranium content of geological units in France, J. Environ. Radioactiv., 166, 210–219, https://doi.org/10.1016/j.jenvrad.2016.05.022, 2017.
Inomata, Y., Chiba, M., Igarashi, Y., Aoyama, M., and Hirose, K.: Seasonal
and spatial variations of enhanced gamma ray dose rates derived from 222Rn progeny during precipitation in Japan, Atmos. Environ., 41,
8043–8057, https://doi.org/10.1016/j.atmosenv.2007.06.046, 2007.
Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R.-L., Balkanski, Y. J.,
Beagley, S. R., Bergmann, D. J., Blackshear, W. T., Brown, M., Chiba, M.,
Chipperfield, M. P., de Grandpré, J., Dignon, J. E., Feichter, J., Genthon, C., Grose, W. L., Kasibhatla, P. S., Köhler, I., Kritz, M. A.,
Law, K., Penner, J. E., Ramonet, M., Reeves, C. E., Rotman, D. A., Stockwell, D. Z., Van Velthoven, P. F. J., Verver, G., Wild, O., Yang, H., and Zimmermann, P.: Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers, J. Geophys. Res.-Atmos., 102, 5953–5970, https://doi.org/10.1029/96JD02955, 1997.
Karstens, U., Schwingshackl, C., Schmithüsen, D., and Levin, I.: A
process-based 222radon flux map for Europe and its comparison to long-term observations, Atmos. Chem. Phys., 15, 12845–12865,
https://doi.org/10.5194/acp-15-12845-2015, 2015.
Karstens, U., Levin, I., Ramonet, M., Gerbig, C., Arnold, S., Conil, S.,
Della Coletta, J., Frumau, A., Gheusi, F., Kazan, V., Kubistin, D., Lindauer, M., Lopez, M., Maurer, L., Mihalopoulos, N., Pichon, J.-M., and Spain, G.: Assessment of regional atmospheric transport model performance using 222Radon observations, in: Geophysical Research Abstracts, EGU General
Assembly 2020, Vienna, Austria, https://doi.org/10.5194/egusphere-egu2020-10467, 2020.
Leadbetter, S. J., Hort, M. C., Jones, A. R., Webster, H. N., and Draxler, R. R.: Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME, J. Environ. Radioact., 139, 200–211, https://doi.org/10.1016/j.jenvrad.2014.03.018, 2015.
Lemaitre, P., Sow, M., Quérel, A., Dépée, A., Monier, M., Menard, T., and Flossmann, A.: Contribution of Phoretic and Electrostatic Effects to the Collection Efficiency of Submicron Aerosol Particles by Raindrops, Atmosphere, 11, 1028, https://doi.org/10.3390/atmos11101028, 2020.
López-Coto, I., Mas, J. L., and Bolivar, J. P.: A 40-year retrospective
European radon flux inventory including climatological variability, Atmos. Environ., 73, 22–33, https://doi.org/10.1016/j.atmosenv.2013.02.043, 2013.
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol., 17, 187–202, https://doi.org/10.1007/BF00117978, 1979.
Mallet, V. and Sportisse, B.: 3-D chemistry-transport model Polair: numerical issues, validation and automatic-differentiation strategy, Atmos. Chem. Phys. Discuss., 4, 1371–1392, https://doi.org/10.5194/acpd-4-1371-2004, 2004.
Mallet, V., Pourchet, A., Quélo, D., and Sportisse, B.: Investigation of
some numerical issues in a chemistry-transport model: Gas-phase simulations, J. Geophys. Res., 112, 1–16, https://doi.org/10.1029/2006JD008373, 2007.
Manohar, S. N., Meijer, H. A. J., and Herber, M. A.: Radon flux maps for the
Netherlands and Europe using terrestrial gamma radiation derived from soil
radionuclides, Atmos. Environ., 81, 399–412, https://doi.org/10.1016/j.atmosenv.2013.09.005, 2013.
Mathieu, A., Korsakissok, I., Quélo, D., Groëll, J., Tombette, M.,
Didier, D., Quentric, E., Saunier, O., Benoit, J.-P., and Isnard, O.: Fukushima Daiichi: Atmospheric Dispersion and Deposition of Radionuclides
from the Fukushima Daiichi Nuclear Power Plant Accident, Elements, 8, 195–200, https://doi.org/10.2113/gselements.8.3.195, 2012.
Maurer, C., Baré, J., Kusmierczyk-Michulec, J., Crawford, A., Eslinger,
P. W., Seibert, P., Orr, B., Philipp, A., Ross, O., Generoso, S., Achim, P.,
Schoeppner, M., Malo, A., Ringbom, A., Saunier, O., Quèlo, D., Mathieu,
A., Kijima, Y., Stein, A., Chai, T., Ngan, F., Leadbetter, S. J., De Meutter, P., Delcloo, A., Britton, R., Davies, A., Glascoe, L. G., Lucas, D. D., Simpson, M. D., Vogt, P., Kalinowski, M., and Bowyer, T. W.: International challenge to model the long-range transport of radioxenon released from medical isotope production to six Comprehensive Nuclear-Test-Ban Treaty monitoring stations, J. Environ. Radioact., 192, 667–686, https://doi.org/10.1016/j.jenvrad.2018.01.030, 2018.
Melintescu, A., Chambers, S. D., Crawford, J., Williams, A. G., Zorila, B.,
and Galeriu, D.: Radon-222 related influence on ambient gamma dose, J. Environ. Radioact., 189, 67–78, https://doi.org/10.1016/j.jenvrad.2018.03.012, 2018.
Mercier, J.-F., Tracy, B. L., d'Amours, R., Chagnon, F., Hoffman, I., Korpach, E. P., Johnson, S., and Ungar, R. K.: Increased environmental gamma-ray dose rate during precipitation: a strong correlation with
contributing air mass, J. Environ. Radioact., 100, 527–533, https://doi.org/10.1016/j.jenvrad.2009.03.002, 2009.
Météo France: Données publiques, https://donneespubliques.meteofrance.fr/, last access: 21 July 2022.
Paatero, J., Vira, J., Siitari-Kauppi, M., Hatakka, J., Holmén, K., and
Viisanen, Y.: Airborne fission products in the high Arctic after the Fukushima nuclear accident, J. Environ. Radioact., 114, 41–47, https://doi.org/10.1016/j.jenvrad.2011.12.027, 2012.
Quélo, D., Krysta, M., Bocquet, M., Isnard, O., Minier, Y., and Sportisse, B.: Validation of the Polyphemus platform on the ETEX, Chernobyl
and Algeciras cases, Atmos. Environ., 41, 5300–5315, https://doi.org/10.1016/j.atmosenv.2007.02.035, 2007.
Quérel, A., Monier, M., Flossmann, A. I., Lemaitre, P., and Porcheron, E.: The importance of new collection efficiency values including the effect
of rear capture for the below-cloud scavenging of aerosol particles, Atmos. Res., 142, 57–66, https://doi.org/10.1016/j.atmosres.2013.06.008, 2014.
Quérel, A., Quélo, D., Roustan, Y., and Mathieu, A.: Sensitivity study to select the wet deposition scheme in an operational atmospheric transport model, J. Environ. Radioactiv., 237, 106712, https://doi.org/10.1016/j.jenvrad.2021.106712, 2021.
Rotach, M. W., Wohlfahrt, G., Hansel, A., Reif, M., Wagner, J., and Gohm, A.: The World is Not Flat: Implications for the Global Carbon Balance, B. Am. Meteorol. Soc., 95, 1021–1028, https://doi.org/10.1175/BAMS-D-13-00109.1, 2014.
Rotach, M. W., Gohm, A., Lang, M. N., Leukauf, D., Stiperski, I., and Wagner, J. S.: On the Vertical Exchange of Heat, Mass, and Momentum Over Complex, Mountainous Terrain, Front. Earth Sci., 3, 76, https://doi.org/10.3389/feart.2015.00076, 2015.
Röttger, A., Röttger, S., Grossi, C., Vargas, A., Curcoll, R., Otáhal, P., Hernández-Ceballos, M. Á., Cinelli, G., Chambers, S., Barbosa, S. A., Ioan, M.-R., Radulescu, I., Kikaj, D., Chung, E., Arnold, T., Yver-Kwok, C., Fuente, M., Mertes, F., and Morosh, V.: New metrology for radon at the environmental level, Meas. Sci. Technol., 32, 124008, https://doi.org/10.1088/1361-6501/ac298d, 2021.
Saito, K., Ishigure, N., Petoussi-Henss, N., and Schlattl, H.: Effective dose conversion coefficients for radionuclides exponentially distributed in the ground, Radiat. Environ. Biophys., 51, 411–423, https://doi.org/10.1007/s00411-012-0432-y, 2012.
Sato, Y., Sekiyama, T. T., Fang, S., Kajino, M., Quérel, A., Quélo, D., Kondo, H., Terada, H., Kadowaki, M., Takigawa, M., Morino, Y., Uchida,
J., Goto, D., and Yamazawa, H.: A model intercomparison of atmospheric 137Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, phase III: Simulation with an identical source term and meteorological field at 1-km resolution, Atmos. Environ. X, 7, 100086,
https://doi.org/10.1016/j.aeaoa.2020.100086, 2020.
Saunier, O., Mathieu, A., Didier, D., Tombette, M., Quélo, D., Winiarek,
V., and Bocquet, M.: An inverse modelling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations, Atmos. Chem. Phys., 13, 11403–11421, https://doi.org/10.5194/acp-13-11403-2013, 2013.
Szegvary, T.: European 222Rn flux map for atmospheric tracer applications, University of Basel, Basel, 87 pp., https://duw.unibas.ch/fileadmin/user_upload/duw/UGW/Research/Radon/Szegvary_2007.pdf (last access: 21 July 2022), 2007.
Téléray: Téléray – IRSN webpage, https://teleray.irsn.fr/, last access: 7 February 2022.
Tombette, M.: C3X: A software platform for assessing the consequences of an
accidental release of radioactivity into the atmosphere, http://venus.iis.u-tokyo.ac.jp/english/workshop/Poster/3rd March/Damien Didier.pdf (last access: 21 July 2022), 2014.
Troen, I. and Mahrt, L.: A simple model of atmospheric boundary layer;
sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37, 129–148, 1986.
Vargas, A., Arnold, D., Adame, J. A., Grossi, C., Hernández-Ceballos, M.
A., and Bolivar, J. P.: Analysis of the vertical radon structure at the Spanish “El Arenosillo” tower station, J. Environ. Radioact., 139, 1–17, https://doi.org/10.1016/j.jenvrad.2014.09.018, 2015.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ, Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Wang, D., Wang, X., Liu, L., Wang, D., Huang, H., and Pan, C.: Evaluation of
CMPA precipitation estimate in the evolution of typhoon-related storm rainfall in Guangdong, China, J. Hydroinform., 18, 1055–1068,
https://doi.org/10.2166/hydro.2016.241, 2016.
Zahorowski, W., Chambers, S. D., and Henderson-Sellers, A.: Ground based
radon-222 observations and their application to atmospheric studies, J. Environ. Radioactiv., 76, 3–33, https://doi.org/10.1016/j.jenvrad.2004.03.033, 2004.
Zhang, B., Liu, H., Crawford, J. H., Chen, G., Fairlie, T. D., Chambers, S.,
Kang, C.-H., Williams, A. G., Zhang, K., Considine, D. B., Sulprizio, M. P.,
and Yantosca, R. M.: Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport, Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, 2021.
Short summary
A radon long-range atmospheric transport modelling is set up from soil (exhalation) to soil (deposition of its progeny) and the consequent ambient gamma dose rate is evaluated. The whole is statistically assessed in regards to more than 15 000 gamma dose rate peaks. The model has proven to be of the correct magnitude, with room for substantial improvements. It may be used to validate an atmospheric transport modelling and to test any exhalation maps of radon at continental scale.
A radon long-range atmospheric transport modelling is set up from soil (exhalation) to soil...