Preliminary laboratory studies on hydrogen storage in a salt cavern of the Eocene Barbastro Formation, Southern Pyrenees, Spain
Instituto Geológico y Minero de España (CN-IGME. CSIC), Oviedo, Spain, Spain
José Mediato
Instituto Geológico y Minero de España (CN-IGME. CSIC), Oviedo, Spain, Spain
Berta Ordóñez
Instituto Geológico y Minero de España (CN-IGME. CSIC), Oviedo, Spain, Spain
Nuria Garcia-Mancha
Centro Nacional del Hidrógeno, Ciudad Real, Spain
Pablo Santolaria
Institut de Recerca Geomodels and Departament de Dinàmica de la Terra i de l'Oceà, UB (University of Barcelona), Barcelona, Spain
Pablo Calvín
Departamento de Geología, Universidad de Salamanca, Salamanca, Spain
José Sanchez Guzman
Salmueras Depuradas SL, Monzón, Spain
Jesús Gracia
Salmueras Depuradas SL, Monzón, Spain
Sara Roces
Instituto Geológico y Minero de España (CN-IGME. CSIC), Oviedo, Spain, Spain
Universidad de Oviedo, Oviedo, Spain
Pilar Mata Campos
Instituto Geológico y Minero de España (CN-IGME. CSIC), Oviedo, Spain, Spain
deceased
Edgar Berrezueta
Instituto Geológico y Minero de España (CN-IGME. CSIC), Oviedo, Spain, Spain
Related authors
No articles found.
Pablo Santolaria, Roi Silva-Casal, Núria Carrera, Josep A. Muñoz, Pau Arbués, and Pablo Granado
Solid Earth, 16, 899–927, https://doi.org/10.5194/se-16-899-2025, https://doi.org/10.5194/se-16-899-2025, 2025
Short summary
Short summary
Among sedimentary rocks, evaporites (as salt) have a particular behavior when deformed under geological forces: they flow while the others break. Such behavior controls the evolution of mountain building events. By mapping the distribution of rocks and interpreting the subsurface architecture of geological structures we were able to reconstruct the mountain building processes of an area in the Southern Pyrenees and how those evaporites flowed and accumulated.
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
Cited articles
Abe, J. O., Popoola, A. P. I., Ajenifuja, E., and Popoola, O. M.: Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44, 15072–15086, 2019.
Bacci, G., Korre, A., and Durucan, S.: An Experimental and Numerical Investigation into the Impact of Dissolution/Precipitation Mechanisms on CO2 Injectivity in the Wellbore and Far Field Regions, Int. J. Greenh. Gas Control, 5, 579–588, https://doi.org/10.1016/j.ijggc.2010.05.007, 2011.
Basniev, F. A., Omelchenko, K. S., and Adzynova, R. J.: Underground Hydrogen Storage Problems in Russia, in: 18th World Hydrogen Energy Conf. (WHEC 2010), Essen, Germany, 16–21 May 2010, edited by: Stolten, D. and Grube, T., 47–53, ISBN 978-3-89336-654-5, 2010.
Berrezueta, E., Kovács, T., Herrera-Franco, G., Caicedo-Potosí, J., Jaya-Montalvo, M., Ordóñez-Casado, B., Carrión-Mero, P., and Carneiro, J.: Laboratory Studies on Underground H2 Storage: Bibliometric Analysis and Review of Current Knowledge, Appl. Sci., 14, 11286, https://doi.org/10.3390/app142311286, 2024.
Carden, P. and Paterson, L.: Physical, Chemical and Energy Aspects of Underground Hydrogen Storage, Int. J. Hydrogen Energy, 4, 559–569, https://doi.org/10.1016/0360-3199(79)90083-1, 1979.
Cyran, K., Toboła, T., and Kamiński, P.: Experimental study on mechanically driven migration of fluids in rock salt, Engineering Geology, 313, 106975, https://doi.org/10.1016/j.enggeo.2022.106975, 2023.
Dake, L. P.: Fundamentals of Reservoir Engineering, 1st edn., Elsevier, Amsterdam, ISBN 978-0-444-41830-2, 1978.
Foh, S., Novil, M., Rockar, E., and Randolph, P.: Underground Hydrogen Storage. Final Report [Salt Caverns, Excavated Caverns, Aquifers and Depleted Fields], Brookhaven National Laboratory, Upton, NY, https://doi.org/10.2172/6536941, 1979.
García-Sansegundo, J. and Teixell Cácharo, A.: Mapa Geológico de España 1 : 50.000, Hoja No. 287 (Barbastro) y Memoria, IGME, Spain, ISBN 978-84-7840-946-4, 1990.
García-Senz, J., Zamorano-Cáceres, M., Montes, M. J., and Rico, M.: Mapa Geológico de España 1 : 50.000, Hoja No. 326 (Monzón) y Memoria, IGME, Spain, ISBN 978-84-9138-039-9, 1991.
Gil, J. A. and Jurado, M. J.: Geological Interpretation and Numerical Modelling of Salt Movement in the Barbastro–Balaguer Anticline, Southern Pyrenees, Tectonophysics, 293, 3–4, https://doi.org/10.1016/S0040-1951(98)00097-3, 1998.
Houben, M. E., ten Hove, A., Peach, C. J., and Spiers, C. J.: Crack Healing in Rocksalt via Diffusion in Adsorbed Aqueous Films: Microphysical Modelling Versus Experiments, Phys. Chem. Earth, 64, 95–104, https://doi.org/10.1016/j.pce.2012.10.001, 2013.
Iglauer, S.: Optimum Geological Storage Depths for Structural H2 Geo-Storage, J. Pet. Sci. Eng., 212, 109498, https://doi.org/10.1016/j.petrol.2021.109498, 2022.
Iglauer, S., Abid, H., Al-Yaseri, A., and Keshavarz, A.: Hydrogen Adsorption on Sub-Bituminous Coal: Implications for Hydrogen Geo-Storage, Geophys. Res. Lett., 48, https://doi.org/10.1029/2021GL092976, 2021.
IPCC: Special Report on Carbon Dioxide Capture and Storage, Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, ISBN 978-0-521-68551-1, 2005.
Koelemeijer, P. J., Peach, C. J., and Spiers, C. J.: Surface Diffusivity of Cleaved NaCl Crystals as a Function of Humidity: Impedance Spectroscopy Measurements and Implications for Crack Healing in Rock Salt, J. Geophys. Res., 117, B01205, https://doi.org/10.1029/2011JB008627, 2012.
Lackner, K. S.: A Guide to CO2 Sequestration, Science, 300, 1677–1678, https://doi.org/10.1126/science.1079033, 2003.
Lanaja, J. M.: Contribución de la exploración petrolífera al conocimiento de la Geología de España (Inst. Geol. Mine. España Ed.), 465 pp., 17 mapas, ISBN 978-84-7474-398-2, 1987.
Lindblom, U.: A Conceptual Design for Compressed Hydrogen Storage in Mined Caverns, Int. J. Hydrogen Energy, 10, 667–675, https://doi.org/10.1016/0360-3199(85)90006-0, 1985.
Lucha, P., Gutiérrez, F., Galve, J. P., and Guerrero, J.: Geomorphic and stratigraphic evidence of incision-induced halokinetic uplift and dissolution subsidence in transverse drainages crossing the evaporite-cored Barbastro-Balaguer anticline (Ebro Basin, NE Spain), Geomorphology, 171–172, 154–172, https://doi.org/10.1016/j.geomorph.2012.05.015, 2012.
Luzón, A.: Oligocene–Miocene alluvial sedimentation in the northern Ebro Basin, NE Spain: Tectonic control and palaeogeographical evolution. Sedimentary Geology, 177, 19–39, 2005.
Martínez-Peña, B. and Pocoví, A.: El amortiguamiento frontal de la estructura de la cobertera surpirenaica y su relación con el anticlinal de Barbastro-Balaguer, Acta Geológica Hispánica, 23, 81–94, 1988.
Matos, C. R., Carneiro, J. F., and Silva, P. P.: Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification, J. Energy Storage, 21, 241–258, https://doi.org/10.1016/j.est.2018.11.023, 2019.
Mediato, J., Ordóñez, B., and Berrezueta, E.: Estudios químicos, mineralógicos y texturales de alteraciones de superficies minerales expuestas al gas hidrógeno bajo condiciones de reservorio, unpublished project report, H2SALT Project, https://www.h2saltproject.com (last access: 25 September 2025), 2025.
Millán-Garrido, H., Pueyo, E., Aurell, M., Luzón, A., Oliva-Urcia, B., Martínez-Peña, M. B., and Pocoví Juan, A.: Actividad tectónica registrada en los depósitos terciarios del frente meridional del Pirineo central, Revista Sociedad Geológica España, 13, 279–300, 2000.
Nelson, P. H.: Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales, Am. Assoc. Pet. Geol. Bull., 93, 329–340, https://doi.org/10.1306/10240808059, 2009.
Ordóñez, B., Mediato, J., Kovacs, T., Martínez-Martínez, J., Fernández-Canteli, P., González-Menéndez, L., Roces, S., Caicedo-Potosí, J., del Moral, B., and Berrezueta, E.: Experimental geochemical assessment of a seal-reservoir system exposed to supercritical CO2: A case study from the Ebro Basin, Spain, Int. J. Greenh. Gas Control, 137, 104233, https://doi.org/10.1016/j.ijggc.2024.104233, 2024.
Panfilov, M., Gravier, G., and Fillacier, S.: Underground Storage of H2 and H2–CO2–CH4 Mixtures, in: Proc. ECMOR-X – 10th European Conference on the Mathematics of Oil Recovery, Amsterdam, The Netherlands, 4–7 September 2006, cp-23-00003, https://doi.org/10.3997/2214-4609.201402474, 2006.
Pardo, G. and Villena-Morales, J.: Aportación a la geología de la región de Barbastro, Acta geológica hispánica, ISSN 0567-7505, 289–292, 1979.
Pichler, M.: Assessment of Hydrogen–Rock Interactions During Geological Storage of CH4–H2 Mixtures, MSc thesis, unpublished, Montanuniversität Leoben, Austria, https://www.underground-sun-storage.at/fileadmin/bilder/tx_templavoila/Final_Version_Master_Thesis_Markus_Pichler_about_Storage_of_H2-CH4_Mixtures_in_the_Underground_06.pdf (last access: 25 September 2025), 2013.
Pocoví-Juan, A: Estudio geológico de las sierras Marginales Catalanas (Prepirineo de Lérida), Acta Geológica Hispánica, 73–79, 1978.
Quirantes, J.: Estudio sedimentológico y estratigráfico del Terciario Continental de los Monegros, Instituto Fernando el Católico, (CSIC), Diputación Provincial de Zaragoza, Publicación 681, 1978.
Riba, O., Reguant, S., and Villena, J.: Ensayo de síntesis estratigráfica y evolutiva de la Cuenca terciaria del Ebro, in: Libro Jubilar, edited by: Ríos, J. M., Geología de España, Tomo II, Instituto Geológico y Minero de España, 131–159, ISBN 9788474743876, 1983.
Sans, M.: From thrust tectonics to diapirism. The role of evaporites in the kinematic evolution of the eastern South Pyrenean front, Geologica Acta, 1, 239–259, 2003.
Sans, M., Muñoz, J. A., and Vergés, J.: Triangle zone and thrust wedge geometries related to evaporitic horizons (southern Pyrenees), Bulletin of Canadian Petroleum Geology, 44, 375–384, 1996.
Santolaria, P., Ayala, C., Pueyo, E. L., Rubio, F. M., Soto, R., Calvín, P., Luzón, A., Rodríguez-Pintó, A., Oliván, C., and Casas-Sainz, A. M.: Structural and geophysical characterization of the western termination of the South Pyrenean triangle zone, Tectonics, 39, e2019TC005891, https://doi.org/10.1029/2019TC005891, 2020.
Santolaria, P., Ayala, C., Soto, R., Clariana, P., Rubio, F. M., Martín-León, J., Pueyo, E. L., and Muñoz, J. A.: Salt distribution in the South Pyrenean Central Salient: Insights from gravity anomalies, Tectonics, 43, e2024TC008274, https://doi.org/10.1029/2024TC008274, 2024.
Senz, J. G. and Zamorano, M.: Evolución tectónica y sedimentaria durante el Priaboniense superior-Mioceno inferior, en el frente de cabalgamiento de las Sierras Marginales occidentales, Acta geológica hispánica, 27, 195–209, 1992.
Soler-Sampere, M., García-Senz, J., Salazar, A., Mata, M. P., and González Blázquez, J.: Nuevos Datos del Relleno Sedimentario del Borde Norte de la Cuenca del Ebro Aportados por la Testificación Continua del Sondeo Campián-1 Bis (Monzón, Huesca), in: X Congreso Geológico de España, 6–8 June 2021, Vitoria-Gasteiz, Spain, Geotemas (Madrid), 18, 1134, ISSN 1576-5172, 2021.
Sørensen, B.: Chapter 6 – Social Implications In Sustainable World, Hydrogen and Fuel Cells, 2nd Edn., Academic Press, 361–402, ISBN 9780123877093, https://doi.org/10.1016/B978-0-12-387709-3.50006-1, 2012.
Tarkowski, R.: Underground Hydrogen Storage: Characteristics and Prospects, Renew. Sustain. Energy Rev., 105, 86–94, https://doi.org/10.1016/j.rser.2019.01.051, 2019.
Tarkowski, R. and Czapowski, G.: Salt Domes in Poland – Potential Sites for Hydrogen Storage in Caverns, Int. J. Hydrogen Energy, 43, 21414–21427, https://doi.org/10.1016/j.ijhydene.2018.09.212, 2018.
Tarkowski, R., Uliasz-Misiak, B., and Tarkowski, P.: Storage of Hydrogen, Natural Gas, and Carbon Dioxide – Geological and Legal Conditions, Int. J. Hydrogen Energy, 46, 20010–20022, https://doi.org/10.1016/j.ijhydene.2021.03.131, 2021.
Wollenweber, J., Alles, S., Busch, A., Krooss, B. M., Stanjek, H., and Littke, R.: Experimental Investigation of the CO2 Sealing Efficiency of Caprocks, Int. J. Greenh. Gas Control, 4, 231–241, https://doi.org/10.1016/j.ijggc.2010.01.003, 2010.
Yu, X., Zeng, Y., Yao, H., and Yang, J.: Metastable Phase Equilibria in the Aqueous Ternary Systems KCl + MgCl2 + H2O and KCl + RbCl + H2O at 298.15 K, J. Chem. Eng. Data, 56, 8, 3384–3391, https://doi.org/10.1021/je200360f, 2011.
Zeng, Z., Ma, H., Yang, C., Zhao, K., Liang, X., Li, H., and Zheng, Z.: Self-Healing Behaviors of Damaged Rock Salt Under Humidity Cycling, Int. J. Rock Mech. Min. Sci., 174, 105636, https://doi.org/10.1016/j.ijrmms.2024.105636, 2024.
Short summary
This study explores how rock salt reacts to hydrogen, aiming to support safe underground storage of renewable energy. Lab tests on samples from a potential salt cavern-type site in Spain showed that hydrogen caused no major changes to the rock. Minor effects were limited and did not impact overall stability. These findings help confirm that storing hydrogen in salt formations is a safe and reliable option for future energy systems.
This study explores how rock salt reacts to hydrogen, aiming to support safe underground storage...