Articles | Volume 65
https://doi.org/10.5194/adgeo-65-127-2025
https://doi.org/10.5194/adgeo-65-127-2025
07 Jan 2025
 | 07 Jan 2025

Identifying weather patterns responsible for renewable energy droughts over India

Isa Dijkstra, Hannah C. Bloomfield, and Kieran M. R. Hunt

Related authors

Western disturbances and climate variability: a review of recent developments
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
Weather Clim. Dynam., 6, 43–112, https://doi.org/10.5194/wcd-6-43-2025,https://doi.org/10.5194/wcd-6-43-2025, 2025
Short summary
A novel explainable deep learning framework for reconstructing South Asian palaeomonsoons
Kieran M. R. Hunt and Sandy P. Harrison
Clim. Past, 21, 1–26, https://doi.org/10.5194/cp-21-1-2025,https://doi.org/10.5194/cp-21-1-2025, 2025
Short summary
PDO-driven interdecadal variability of snowfall over the Karakoram and Western Himalaya
Priya Bharati, Pranab Deb, and Kieran M. R. Hunt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2845,https://doi.org/10.5194/egusphere-2024-2845, 2024
Short summary
GC Insights: Open-access R code for translating the co-occurrence of natural hazards into impact on joint financial risk
John Hillier, Adrian Champion, Tom Perkins, Freya Garry, and Hannah Bloomfield
Geosci. Commun., 7, 195–200, https://doi.org/10.5194/gc-7-195-2024,https://doi.org/10.5194/gc-7-195-2024, 2024
Short summary
Increasing frequency and lengthening season of western disturbances are linked to increasing strength and delayed northward migration of the subtropical jet
Kieran M. R. Hunt
Weather Clim. Dynam., 5, 345–356, https://doi.org/10.5194/wcd-5-345-2024,https://doi.org/10.5194/wcd-5-345-2024, 2024
Short summary

Cited articles

Beck, C., Philipp, A., and Streicher, F.: The effect of domain size on the relationship between circulation type classifications and surface climate, Int. J. Climatol., 36, 2692–2709, https://doi.org/10.1002/joc.3688, 2013. a
Bloomfield, H. C., Brayshaw, D. J., and Charlton-Perez, A. J.: Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types, Meteorol. Appl., 27, e1858, https://doi.org/10.1002/met.1858, 2020. a, b, c, d, e, f, g
Bloomfield, H. C., Brayshaw, D. J., Gonzalez, P. L., and Charlton-Perez, A.: Pattern-based conditioning enhances sub-seasonal prediction skill of European national energy variables, Meteorol. Appl., 28, e2018, https://doi.org/10.1002/met.2018, 2021.​​​​​​​ a
Cannon, D., Methven, J., Brayshaw, D., and Drew, D.: Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation, Meteorol. Z., 26, 239–252, https://doi.org/10.1127/metz/2016/0751, 2017.​​​​​​​ a
Cassou, C.: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation, Nature, 455, 523–527, https://doi.org/10.1038/nature07286, 2008. a, b
Download
Short summary
Energy systems across the globe are evolving to meet climate mitigation targets. This requires rapid reductions in fossil fuel use and much more renewable generation. Renewable energy is dependent on the weather. A consequence of this is that there will be periods of low renewable energy production, driven by particular weather conditions. We look at the weather conditions during these periods and show the Indian energy sector could prepare for these events out to 14 days ahead.