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Abstract. Energy systems across the globe are evolving to
meet climate mitigation targets. This requires rapid reduc-
tions in fossil fuel consumption and significant uptake of re-
newable generation. Renewable energy sources are weather-
dependent, causing production to vary at timescales from
minutes to decades ahead. A consequence of this variabil-
ity is that there will be periods of low renewable energy pro-
duction, here termed renewable energy droughts. This energy
security challenge needs to be addressed to ensure grid sta-
bility. India is chosen as a study area as it is a region that has
both a large proportion of renewable generation and good
subseasonal predictability.

In this study, we use synthetic wind and solar photovoltaic
production timeseries, previously derived for the Indian en-
ergy grid using ERA5 reanalysis from 1979–2022, to iden-
tify historical renewable energy droughts. These are defined
as periods where wind and solar potential is in the low-
est 2.5 % compared to climatology. These events commonly
occur from November–February, with the longest historical
event being 9 d long.

We identify the weather regimes that cause the largest
renewable energy droughts over India and investigate po-
tential sources of predictability. Existing large-scale daily
weather types and impact-based patterns are used to inves-
tigate the different weather patterns causing renewable en-
ergy droughts. Renewable energy droughts are caused by low
seasonal wind speeds in combination with weather patterns
bringing high cloud cover. These are mainly weak northeast
monsoon and western disturbances.

Sources of potential subseasonal predictability are consid-
ered for the largest renewable energy droughts, including the
Madden Julian Oscillation and Boreal Summer Intraseasonal

Oscillation. Although both have a stronger relationship with
high energy potential days, links between phases of these two
oscillations and renewable energy drought days are identi-
fied. These could help to provide early warnings for chal-
lenging security of supply conditions in the future.

1 Introduction

Global reductions in greenhouse gas emissions are required
to meet national carbon targets. Decarbonisation of the elec-
tricity sector is a key mechanism to meet these targets, pre-
dominantly through the electrification of heat and transport
sectors while growing the share of renewable generation
(IPCC, 2021). India is the third largest primary energy con-
sumer in the world (Jain et al., 2020), with consumption
rapidly growing due to improved living conditions, urbani-
sation and economic development (Gulagi et al., 2017). By
2047, demand for electricity in India is expected to increase
by as much as a factor of four (Lu et al., 2020). However,
the country is already struggling to establish a constant and
reliable power supply (Jain et al., 2020). Additionally, India
is making large moves to decarbonise its energy sector. India
has become one of the forerunners in the renewable energy
markets around the world (Kumar and Majid, 2020). In 2022
there were 60.8 GW of installed solar power and 41.7 GW
of installed wind power (Hunt and Bloomfield, 2024), How-
ever, coal still accounts for the bulk of India’s primary energy
supply, (Gulagi et al., 2017; Lu et al., 2020).

Beyond the current installed capacity, India has a large
potential capacity for renewable energy sources, specifically
wind and solar. Solar energy has immense potential in a trop-
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ical country like India, as most parts of the country receive
around 300 sunny days in a year with an average of eight
hours of daily sunshine (Mahtta et al., 2014). Wind power is
most promising during the monsoon when there are strong
westerlies along the entire length of the west coast. Recent
reports found extremely large unrealised potential of both re-
sources (Jain et al., 2020; Hunt and Bloomfield, 2024).

Increasing the amounts of renewables increases the mete-
orological sensitivity of the energy system, as wind and so-
lar energy are dependent on meteorological conditions for
the supply of power. An important consequence of this in-
creased sensitivity to meteorological conditions is the pos-
sibility of renewable energy droughts occurring. Renewable
energy droughts are periods when generation from renew-
able energy sources is unusually low. These impact grid sta-
bility and reliability of power supply (Gangopadhyay et al.,
2022b) and may be the greatest risk for power systems in
high renewable penetration scenarios (Matsuo et al., 2020).
Understanding the frequency and severity of renewable en-
ergy droughts is important to create a secure power supply (as
during times of low renewable energy production alternative
– possibly carbon intensive – solutions are required), and can
aid decisions regarding investment in future storage capacity
(Raynaud et al., 2018). Moreover, understanding the weather
patterns that are responsible for causing energy droughts is
key to forecasting energy droughts in advance (Bloomfield
et al., 2020). The weather patterns can also be used to plan
additional capacity building, if there are regions that have
the potential for high renewable energy production during
energy drought days (Grams et al., 2017; Bloomfield et al.,
2020).

While renewable energy droughts can have important con-
sequences, there is no standard definition of them. Ray-
naud et al. (2018) characterise two types of energy droughts:
Energy Production Droughts (EPDs) and Energy Supply
Droughts (ESDs), where EPDs are periods with low power
production and ESDs are periods with a mismatch between
production and demand. Both of these definitions need a
threshold under which something is considered a drought.
This is generally taken as a certain percentile of wind power
generation, or residual load (i.e. demand-net-renewables).
This threshold is variable across studies. Ohlendorf and
Schill (2020) use thresholds of 2 %, 5 % and 10 % for wind
energy droughts, while Rinaldi et al. (2021) define a drought
when the daily power is less than half of the 39-year daily
mean for that day of the year. Beyond definitions, another
consideration is choice of data type. Extreme events, by defi-
nition, occur infrequently, so long and reliable records are re-
quired. This means that metered power system data cannot be
used due to the constantly evolving distribution of renewable
energy sources (Cannon et al., 2017). While different studies
use different definitions of energy droughts, and might use
different data types, there are some common findings in stud-
ies done around the globe. The occurrence of renewable en-
ergy droughts is generally found to decrease with the severity

of the drought in studies across Europe (Leahy and McK-
eogh, 2013; Ohlendorf and Schill, 2020; Otero et al., 2022),
Africa (Seyedhashemi et al., 2021), and India (Gangopad-
hyay et al., 2022a). Drought frequency, duration, and inten-
sity also tend to decrease when considering multiple energy
sources or considering larger geographic areas (Handschy
et al., 2017; Pryor et al., 2020; Jurasz et al., 2020; Rinaldi
et al., 2021). Gangopadhyay et al. (2022a) studied renewable
energy droughts in India using a stochastic weather gener-
ator to generate 5000 years of weather data to consider re-
newable energy droughts with large return periods. Using the
stochastic weather generator, Gangopadhyay et al. (2022b)
found that wind energy droughts are more intense than solar
energy droughts, and they explored the role of wind-solar hy-
bridisation in dealing with wind energy droughts. The results
are regionally dependent, as they found that in South India,
hybrid plants perform better than either wind or solar plants
alone, while in Rajasthan, solar plants generally perform bet-
ter. However, the results of Gangopadhyay et al. (2022b) are
limited to only two regions of India and do not investigate
the weather conditions responsible for the observed energy
droughts.

Some previous work has considered the relationship be-
tween potentially stressful energy system conditions and
large-scale weather patterns. Dunning et al. (2015) investi-
gated the relationship between Indian monsoon phases, wind
power and temperature-dependent demand. They found that
active monsoon phases have stronger winds and therefore
higher wind power generation. However, they also experi-
ence lower temperatures resulting in lower demand. The op-
posite is true for monsoon break phases. This opposing rela-
tionship between reduced wind power supply and increased
cooling energy demand during prolonged monsoon breaks
can provide a challenge to energy systems (Kulkarni et al.,
2018), especially if these are combined with cloudy condi-
tions so solar generation is low.

As well as knowing the weather conditions responsible for
renewable energy droughts over India, there is a need to un-
derstand their predictability and the potential limitations of
energy-based early warning systems. This paper will focus
on the medium to subseasonal predictability range, as this
has previously been discussed as key for energy stakeholder
decision making (White et al., 2017). Das and Baidya Roy
(2021) investigated the subseasonal to seasonal scale pre-
dictability of energy-relevant variables over India. They con-
sidered the variables 10 m wind speeds, incoming solar radia-
tion, 2 m temperature and 2 m relative humidity, during April
to May when energy demand is highest, and during June to
September when renewable power production is higher than
demand, for 1-, 2-, 3-, 4-, and 5-month lead times. Das and
Baidya Roy (2021) found that overall, the skill levels were
low, therefore there is great scope for using pattern-based
predictability (e.g. Bloomfield et al., 2020).

Neal et al. (2020) developed a set of 30 weather patterns
over India using a k-means clustering algorithm. These pat-
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terns are designed to represent country-scale precipitation
variability. The weather patterns generally persist for 2–3 d,
although there are occurrences of weather patterns persist-
ing for over 20 d. As these patterns were developed for un-
derstanding precipitation variability (predominantly for land-
slide modelling) they have the potential to capture variations
in solar radiation – and therefore solar power – well. Winds
are also one of the variables used in the clustering algorithm,
so there is an expectation that the patterns may also relate to
wind power generation. Neal et al. (2022) reported skill in
predicting these patterns from 10–15 d ahead, depending on
the pattern. Patterns falling in the winter dry period regime
have the highest forecast skill, and weather patterns falling
into the monsoon onset and monsoon break weather regimes
have the lowest forecast skill.

Beyond weather patterns, another source of predictability
could come from links to modes of intraseasonal variability
such as the Madden Julian Oscillation (MJO) and the Boreal
Summer Intraseasonal Oscillation (BSISO). The MJO and
BSISO are strongest in different seasons. As its name sug-
gests, the BSISO dominates in boreal summer, from June to
October, while the MJO dominates from December to April.
November and May are transition months, and these are in-
fluenced by both the MJO and the BSISO (Kikuchi, 2021).
The BSISO and MJO both have an active or convective phase
which are associated with a large increase of convection and
the occurrence of large and deep cloud clusters, while the
opposite occurs during the inactive phase. Both the MJO and
BSISO are described by eight phases based on their propaga-
tion along the Equator. Each of these phases has a different
signature over India with potential impacts on the energy sys-
tem through changes in solar power generation (associated
with convective anomalies) and changes in wind power gen-
eration (through changes in the near-surface wind speeds).
Subseasonal to seasonal models can make skilful forecasts
of the MJO at lead times of two to four weeks ahead; with
the BSISO having similar predictability (Vitart, 2017). Thus,
if the relationships between these intraseasonal models and
potential low energy production days are shown to be consis-
tent, this could give an indication of the probability of these
events occurring up to a month ahead with higher confidence
than using forecasts of gridded meteorological variables.

Another approach to considering the subseasonal pre-
dictability of energy-relevant variables was used over Europe
by (Bloomfield et al., 2020), who developed Targeted Circu-
lation Types (TCTs). Rather than using already established
weather patterns, TCTs characterise the large-scale circula-
tion patterns that are of most interest to the electricity grid
by clustering energy-relevant variables. While TCTs are bet-
ter at characterising variability of extremes (e.g., the proba-
bility of demand-net-renewables being in the upper 10 % of
the climatological distribution), they did not lead to signif-
icantly better subseasonal forecasts than traditional patterns
(Bloomfield et al., 2021).

Despite their rapidly increasing investment in renewables,
there has been little work exploring the likelihood of renew-
able energy droughts in India, the weather patterns responsi-
ble, and how predictable they are. Therefore, this study has
the following aims:

– To identify weather patterns that are associated with In-
dian combined wind and solar energy droughts.

– To define a set of impact-based patterns for forecasting
Indian renewable energy.

– To explore the potential predictability at subseasonal
timescales of Indian combined wind and solar energy
droughts.

This study looks into the different weather patterns associ-
ated with renewable energy droughts in India, and consid-
ers potential sources of predictability. Section 2 describes
the data and methods used to analyse the energy droughts in
this study and relevant meteorological patterns used to asses
the sources of potential predictability. This study is laid out
as follows. We characterise renewable energy droughts from
wind and solar power generation (Sect. 3.1), their relation-
ship to traditional weather patterns (Sect. 3.2), and the po-
tential for impact-based patterns to characterise renewable
energy droughts (Sect. 3.3). We then discuss the implications
of this work (Sect. 4), and conclude with the key findings and
possibilities for future work (Sect. 5).

2 Data and methods

2.1 Energy drought definitions

Energy droughts are defined here following the energy pro-
duction droughts described in Raynaud et al. (2018), where
a low production period is a contiguous sequence of days
during which the combined wind and solar power genera-
tion is below a given low-production threshold (in our case
the lowest 2.5 % of days). A key difference from Raynaud
et al. (2018) is we maintain the single-day events as these
are useful for the daily weather-pattern analysis conducted
in Sect. 3.2. We consider only combined wind and solar
droughts in this study, but the individual cases (i.e. wind
power only or solar power only) are sometimes commented
on to add context to the discussion. We note hydropower is
not included in the renewable energy generation totals in this
study.

Initially the 100 d with the lowest synthetic energy pro-
duction are taken as the renewable energy drought days. This
value is chosen because it represents extremely low energy
production (lower than the 1st percentile), while still having
enough data to conduct analysis. When considering the tim-
ing of renewable energy droughts associated with different
teleconnections the lowest 2.5 % of synthetic energy produc-
tion data is used to provide enough data when the drought
days are split over the eight MJO or BSISO phases.
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2.2 Meteorological datasets

The ERA5 reanalysis (Hersbach et al., 2020) is used for all
meteorological variables in this study. ERA5 is produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) and is their fifth generation of atmospheric re-
analyses. The period covered by ERA5 is 1940 to the present
day, and within this study the period of 1979–2022 has been
used. ERA5 data is produced and archived as spectral co-
efficients or on a reduced Gaussian grid, which has quasi-
uniform spacing over the globe. It therefore has a horizontal
resolution of approximately 31 km over India, with 137 ver-
tical levels (Hersbach et al., 2020). The following surface-
level variables are used at hourly timescales: mean down-
ward shortwave radiation flux, zonal and meridional wind
speeds at 10 and 100 m and temperatures at 2 m. These are
used to drive the wind power and solar power models de-
scribed in Sect. 2.3.

Only data from one daily time step are used for the sur-
face variables composites in Sect. 3.2. The times used are
09:00 UTC for mean downward shortwave radiation (as this
is the middle of the day in India and thus has maximum in-
coming solar radiation), and 12UTC for the wind variables
(as India experiences a strong diurnal cycle in near-surface
wind speeds and this is a time of day that is representative
of the median wind speeds). The anomaly fields (e.g. x′) for
the low energy potential days are calculated by subtracting
a weighted monthly mean field – e.g., for 7 June, we would
subtract the mean value for all Junes from 1979–2022 – from
the composite mean of the low energy potential days (e.g. x)
as shown in the following equation:

x′7 June = x7 June− xJune (1)

2.3 Wind and solar power data

A timeseries of hourly wind and solar power capacity factors
are used from Hunt and Bloomfield (2024), spanning 1979
to 2022. The wind power capacity factors are calculated with
a physical model, where hourly gridded 100 m wind speeds
over India are passed through a representative power curve
to convert from wind speed to capacity factor. It is assumed
that in each grid box the most suitable turbines are installed,
which are those that maximise synthetic power production
(see Sect. 2.5 of Hunt and Bloomfield, 2024 for details).
These capacity factors are then converted into national gener-
ation totals in GW by weighting by the locations of installed
wind generation in 2022. Installed wind power generation
in 2022 is largely concentrated in the western edge of the
Indian peninsula, with highest densities along the Western
Ghats and in the Rann of Kutch (Gujarat).

Timeseries of India-averaged solar power capacity factors
(SP_CF) are created as in Bloomfield et al. (2020). Hourly
gridded 2 m temperatures and incoming shortwave irradiance
are used as the meteorological input to the following equa-

tion:

SP_CF(G,T , t)= η(T (t))
G(t)

Gref
, (2)

where G(t) is the incoming (i.e. downward) shortwave radi-
ation at the surface,Gref = 1000 W m−2, T (t) is the environ-
mental 2 m temperature (with which the photovoltaic cell is
assumed to be in equilibrium), and η is the relative efficiency,
given by:

η(t)= ηref (1−βref(T (t)− Tref)) , (3)

where ηref = 0.9, βref = 0.042, and Tref = 25 °C.
These gridded capacity factors are then aggregated using

the weighted mean, where the weights are the known loca-
tions of solar power generation. From this we get a timeseries
of synthetic solar production over the whole of India in GW.
Solar power installations are relatively evenly spread across
India with much of the south having some coverage. The two
models verify well against measured data with an R-statistic
greater than 0.9 (see Sect. 2.5 of Hunt and Bloomfield, 2024
for full verification). We note that when energy production is
referred to in the remained of the study, this is referring to
the reanalysis-driven wind and solar power data described in
this section.

2.4 Indian weather patterns

To consider the types of weather patterns responsible for
renewable energy droughts, the 30 weather patterns de-
rived by Neal et al. (2022) are used. These patterns are de-
signed to represent precipitation variability and include all
the main monsoonal and non-monsoonal circulation types
that occur throughout the year. They are created using a
non-hierarchical k-means clustering algorithm applied to
ERA-Interim reanalysis data from 1979 to 2016 (Dee et al.,
2011). The variables used in the clustering were pressure
at mean sea-level, and zonal and meridional winds at 10 m,
925 hPa, and 850 hPa wind. The moisture information is
implicitly included in these weather regimes through the
wind vectors because moisture is directly related to wind di-
rection over India. 192 sets of weather patterns were cre-
ated using a hierarchical clustering methodology for var-
ious geographical areas and combinations of meteorolog-
ical variables. The set of weather pattern that were re-
tained were those that best represented precipitation variabil-
ity using an explained variation score. This score measures
how well a daily precipitation series can be reconstructed
based on knowledge only of the weather pattern classifica-
tion (Beck et al., 2013). Pattern numbers are freely available
for each day from 1979–2016 and can be downloaded from
https://doi.org/10.1594/PANGAEA.902030 (Neal et al.,
2019). This timeseries was used to determine the relation-
ship between weather patterns and energy drought days in
Sect. 3.2.1.

Adv. Geosci., 65, 127–140, 2025 https://doi.org/10.5194/adgeo-65-127-2025

https://doi.org/10.1594/PANGAEA.902030


I. Dijkstra et al.: Identifying weather patterns responsible for renewable energy droughts over India 131

2.5 Teleconnection indices

Daily data on MJO and BSISO phase and amplitude are
used to understand their behaviour during renewable energy
droughts. MJO phase and amplitude are based empirical or-
thogonal functions of zonal wind at 850 and 200 hPa, and
outgoing longwave radiation in the near-equatorial region
(Wheeler and Hendon, 2004). The MJO dataset is freely
available from the Australian Government Bureau of Mete-
orology at http://www.bom.gov.au/climate/mjo/ (last access:
3 May 2023).

BSISO data is also based on a pair of empirical or-
thogonal functions, but these are created using only out-
going longwave radiation and zonal wind at 850 hPa,
and are taken over the region 10° S–40° N, 40–160° E
(Lee et al., 2013). BSISO data is obtained from the In-
ternational Pacific Research Centre at the University of
Hawaii at https://iprc.soest.hawaii.edu/users/kazuyosh/ISO_
index/data/BSISO_25-90bpfil_pc.extension.txt (last access:
3 May 2023). Following convention, only days with an MJO
or BSISO amplitude of higher than 1 are considered, as am-
plitudes below 1 indicate an insignificant MJO or BSISO
event (e.g. Kikuchi, 2021).

2.6 Impact-based patterns

Impact-based patterns are created using the large-scale me-
teorological variables present during low energy production
days over the region [5–40° N, 60–100° E]. Clusters are com-
puted by applying k-means to 850 hPa u, 850 hPa v, and sur-
face shortwave radiation flux on days in which total modelled
energy production is in the bottom 2.5 %. Data are taken from
ERA5, with winds masked where the orography is higher
than 1500 m (i.e. approximately 850 hPa). An elbow method
was used to determine the optimal cluster number of three.
Sensitivity analysis was conducted on the most appropriate
variables to use to capture the behaviour of renewable en-
ergy droughts (e.g., using u and v component winds from
500, 250 hPa and using relative humidity or cloud cover data
to represent potential convection). However, all cluster sets
look qualitatively similar, and lead to 3 as an optimal num-
ber.

3 Results

3.1 Renewable energy droughts

Over India, renewable energy droughts are most common
from November–February, with some events happening as
early as October (Fig. 1). The lowest 100 d of combined
wind and solar generation predominantly occur between De-
cember and February. However, when relaxing this defini-
tion to consider the lowest 2.5 % of renewable energy gener-
ation the period of interest extends from late August to early
March (Fig. 1). During the post-monsoon period (October–

November) the average renewable generation is 14.3 GW.
However, of this an average of 10 GW is solar generation,
with wind energy production often close to zero after the
withdrawal of the summer monsoon but before the onset of
the northeast winter monsoon. This means that the renew-
able energy drought days are commonly driven by variabil-
ity in wind energy production. 73 % of the renewable energy
drought days occur on days on which there is no separate
wind or solar energy drought if the two renewable sources
are considered in isolation. This indicates that the majority
of renewable energy drought days occur due to a combina-
tion of relatively low wind and solar, while the wind or solar
power production is not extremely low by itself. A similar
result is found considering the lowest 2.5 % of combined en-
ergy production days, and for these days an even larger pro-
portion (84.1 %) are found to not overlap with an individual
wind or solar energy drought days.

When considering the lowest 100 d of renewable energy
droughts, 20 of these days are multi-day events, i.e. occur in
consecutive periods of at least 2 d. The longest period in this
extreme energy drought definition lasts 5 d (see Fig. 2).

Extending this to include days in the bottom 2.5 %, the
longest renewable energy droughts last 9 d. This occurred
twice: once in December 1991 and once in November 2010.
Occurring twice within the 43-year period studied here gives
such events an approximate return period of twenty years.
These prolonged periods of critically low generation would
put a large strain on the power system from both a energy sys-
tem security (i.e., keeping the lights on) and carbon intensity
(i.e., meeting net-zero targets) perspective. Within this defi-
nition there are 96 events which are multi-day events, show-
ing this is a relatively frequent problem (of the order of two
each year) multi-day events. The potential for a week-long
energy drought is particularly important for future power sys-
tems with even higher proportions of renewables, and for
such systems it will be vital to mitigate this using wind and
solar power complementarity (Jurasz et al., 2020; Hunt and
Bloomfield, 2024).

3.2 Relationship between energy droughts and
traditional weather patterns

3.2.1 The 30 Indian weather patterns

Figure 3 shows the occurrence frequency of each of the 30
weather patterns from Neal et al. (2020) during renewable
energy droughts when compared to their climatological fre-
quency. This climatological comparison is important as the
patterns vary considerably in seasonal and total frequency
(Neal et al., 2020). The weather patterns which are most as-
sociated with energy droughts are the winter dry period (pat-
terns 7 and 9, which both have very low winds over the West
coast of India), the retreating monsoon (pattern 1, low wind
speeds over the North-West of India), and western distur-
bances (pattern 27, low winds over the South of India and
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Figure 1. Total realised wind and solar energy production across India from 1979 to 2022 assuming the 2022 renewable energy capacity had
been installed for the whole time period. Small white dots mark days with energy production in the lowest 2.5 %. Large yellow dots mark the
100 d with lowest energy production.

Figure 2. Distribution of length of energy droughts in days for the
100 lowest energy production days (yellow) and the lowest 2.5 %
energy production days (grey).

high precipitation in the North). Pattern 1 mainly occurs from
October to December, with patterns 7, 9 and 27 being more
common from December to April (Neal et al., 2020), Thus,
all these patterns occur mainly in the seasons that the energy
drought days occur (see Fig. 1). Out of these four weather
patterns, pattern 1 has the highest average persistence of
3.5 d, while patterns 7 and 9 have an average persistence of
2 d, and pattern 27 of 1.5 d (Neal et al., 2020). Another factor

to note is that when a day is classified as pattern 27, there is
a larger than 30 % probability that the next day will be pat-
tern 7 (Neal et al., 2022). This means that energy droughts
that start with pattern 1 or pattern 27 are likely to persist
for longer. When analysing the renewable energy production
droughts of 3 d in length the weather patterns associated with
the winter dry period (patterns 7, 9 and 20, not shown) are
three which occur most commonly compared to climatology.
This suggests that moderately different weather conditions
are responsible for the extended duration events compared
to the single day events. The data volumes are however very
small for this analysis (approximately 100 d divided between
30 weather patterns) so we would suggest the use of longer
climate simulations for robust confirmation of these results.

While these patterns do not guarantee the presence of
energy droughts, they may still serve as useful indicators
in longer-range forecasts, particularly if the weather pattern
forecasts (which have skill out to 10–15 d depending on the
pattern; Neal et al., 2022) are more skillful than forecasts of
gridded surface variables (Das and Baidya Roy, 2021).

3.2.2 The MJO and BSISO

The MJO and BSISO have strong seasonality, with the
MJO predominantly being active between December and
April, and the BSISO between June and September (Kikuchi,
2021). Given the tendency for renewable energy drought
days to occur between November and February (Fig. 1),
we would therefore expect a stronger relationship with the
MJO and energy drought days than with the BSISO. Fig-
ure 4 shows composites of anomalous 100 m wind vectors
and downwelling solar radiation averaged over each MJO
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Figure 3. Occurrence frequency of weather patterns defined by Neal et al. (2020) on the 100 lowest energy production days minus the
climatological occurrence frequency. Weather patterns that did not have any low energy days have been set to zero.

phase. We note here a phase is a distinct stage within the
process of the movement of a region of tropical convection
from the Indian ocean to the West Pacific. During phases 1
and 8, negative radiation anomalies (and therefore high cloud
cover) are seen over central and northern India. However,
these are generally accompanied by relatively windy con-
ditions over south India. Phases 2 and 3 show, on average,
relatively windy and sunny conditions except for in the far
south of India. In phases 4 to 6 there are positive shortwave
radiation anomalies over northwest India (where many so-
lar panels are located) with positive anomalies seen in south
India for phase 7.

Figure 5 shows composites of anomalous 100 m wind vec-
tors and downwelling solar radiation during each BSISO
phase. The lowest solar radiation anomalies are seen in
phases 3–6 where convection is enhanced over much of In-
dia, firstly impacting the south of India (phases 3–4) and then
moving to central India (phases 5–6). However, this convec-
tion itself leads to increased wind power generation along
the western coast of the peninsula, which is the region with
the highest installed wind capacity. Positive solar radiation
anomalies are seen in phases 7 and 8 over southwest India,
which then propagate into central India in phases 1 and 2. Of
these four phases the lowest wind speeds are seen in Phase 8
(Fig. 5).

Due to the complementarity between wind and solar power
during periods of strong convection, especially during the
summer monsoon, there are not particularly strong links be-
tween MJO or BSISO phase and the occurrence of renewable
energy droughts. Figures 4 and 5 suggest that the renewable
energy drought days are more likely to be associated with
phases 1 and 8 of the MJO and phases 4–6 of the BSISO.
However, previous work has shown that the weather condi-
tions during renewable energy drought days do not necessar-
ily resemble the features from composites over the weather

patterns (Wiel et al., 2019). In Fig. 6, we therefore show the
occurrence frequency of renewable energy drought during
each phase of the BSISO and MJO. Given the predictabil-
ity of the MJO out to two weeks ahead and beyond (Vitart,
2017), a lag is also included to see if this relationship could
provide information on the potential predictability of the pat-
terns. Figure 6 shows that a presence of a strong BSISO of
any phase is unlikely to lead to an energy drought. This is
logical as generally the BSISO is strongest during the sum-
mer monsoon, a period of typically high renewable energy
production, and energy droughts tend to occur in winter. The
BSISO does, however, have a significant impact on the oc-
currence of energy surplus events (Fig. A1).

Despite the negative solar radiation anomalies in north In-
dia in phase 1 of the MJO, the relatively strong winds and
positive anomalies in the south mean that India is up to 50 %
less likely than average to experience a renewable energy
drought. Phase 3 however, shows increased probabilities of
an energy drought occurring, particularly at a lead time of 3–
5 d, as the anomalous westerlies along the west coast act to
weaken the climatological easterlies. Interestingly, phases 6
and 7 – which on average show positive radiation anomalies,
and weak wind anomalies along the west coast – are asso-
ciated with an increased risk of energy drought. This em-
phasises why the mean composite behavior from Fig. 4 does
not necessarily give a measure of renewable energy drought
day behaviour. Comparing Figs. 4 and 6, we see that low so-
lar radiation anomalies in the south of India are particularly
important for the occurrence of renewable energy droughts.
However, more bespoke classifications are needed to confirm
this.

Although the results from Fig. 7 do not suggest a partic-
ularly robust link between the MJO, BSISO and renewable
energy droughts, Fig. A1 shows that these patterns are po-
tentially useful to users interested in excess renewable gen-
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Figure 4. Downwelling shortwave radiation anomalies and 850 hPa wind anomalies over India for each phase of the Madden Julian Oscil-
lation (MJO). Averaged over December–April 1979–2022, showing the movement of convective anomalies. Positive cloud cover anomalies
can be seen through negative radiation anomalies and vice versa. Anomalies are computed relative to the respective climatological monthly
means. Data are from ERA5, with winds masked where the orography is higher than 1500 m.

Figure 5. Downwelling shortwave radiation anomalies and 850 hPa wind anomalies over India for each phase of the BSISO. Averaged over
June–September 1979–2022, showing the movement of convective anomalies. Positive cloud cover anomalies can be seen through negative
radiation anomalies and vice versa. Anomalies are computed relative to the respective climatological monthly means. Data are from ERA5,
with winds masked where the orography is higher than 1500 m. Note the colour and quiver scales differ from Fig. 5.

eration (here considering the top 2.5 % of renewable energy
generation) and therefore possible grid-induced curtailment.
This is perhaps surprising for the MJO, given the seasonal-
ity of the pattern making it most common in winter. How-
ever while mean production is low in winter, particularly ac-
tive MJO events can drive strong westerly wind bursts over
the south of the peninsula (Joseph et al., 2009; Liang et al.,
2021), briefly causing a surge in wind production.

3.3 Impact-based patterns

As we have shown, many traditional weather patterns are not
strongly associated with renewable energy droughts (Figs. 3
to 6). This suggests that if renewable energy droughts are to
be accurately predicted at sub-seasonal lead times, a more
bespoke solution is needed.

We now perform impact-based clustering to isolate groups
of weather conditions present during energy drought days.
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Figure 6. Occurrence frequency of each BSISO phase (a) and MJO phase (b) on low energy production days and the 14 d beforehand
compared to climatology. The numbers indicate percentage difference from climatology, so −100 means no occurrence of this phase, and
100 means that this phase occurs twice as frequent than its climatological mean. Bars are colored in if they are higher than 50 % or lower
than −50 % as in Cassou (2008).

Figure 7 shows the renewable energy drought days are caused
by three distinct weather patterns, which tend to happen at a
set time of year. These weather patterns can be interpreted,
from left to right, as a northeast monsoon (centred in early
December, comprising 62 % of the total), a summer monsoon
withdrawal (a small group, centered in September, compris-
ing 8 % of the total), and a western disturbance (most com-
mon in early January, comprising 30 % of the total).

However, we can advance on our earlier analysis by
identifying how these particular patterns, leading to energy
droughts, differ from the generic patterns of Neal et al.
(2020). Firstly, we note that the northeast monsoon is un-
usually weak, evidenced by anomalous westerlies along the
west coast. This results in very low wind production, but also
allows convection to build up along the coast, where it would
usually be suppressed by dry air blown off the peninsula by
prevailing easterlies, and thus solar production is also lower
than the (already low) winter average. Secondly, the sum-
mer monsoon withdrawal usually represents a transition from
strong westerlies along the west coast to very weak winds,

and we see that in this composite, as the westerlies are con-
fined to the southern part of the peninsula. However, a late
burst of southeasterlies, perhaps triggered by a low-pressure
system or active BSISO, pushes moist air over northwest In-
dia (a region of high installed solar capacity), where deep
convection significantly reduces solar production. This pat-
tern, though comparatively rare, is potentially very impor-
tant, as energy demand is much higher in September, when
the conditions are hot and humid, than in the winter months.
Thirdly, while we would expect increased cloud cover as-
sociated with the passage of a winter western disturbance,
this composite suggests more widespread cloud cover – es-
pecially to the south, where it reaches into central India and
the Gujarat coast – significantly reducing insolation over a re-
gion of large installed solar capacity. Of additional note, the
surface winds associated with this composite western distur-
bance are quite weak. Combined, these characteristics sug-
gest a weak western disturbance passing unusually far south,
and thus close to the Arabian Sea moisture source.
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Figure 7. Composites of 850 hPa winds and surface shortwave radiation (SWRF) for three impact-based clusters. (a–c) Cluster mean 850 hPa
winds and SWRF. (d–f) The same fields are shown as anomalies to their respective climatological monthly means. For each cluster, the title
shows a mean day-of-year, determined through circular statistics; the cluster population; and, in parentheses, the circulation type most
associated with the cluster.

These patterns are thus consistent with our earlier anal-
ysis based on the thirty weather patterns (Fig. 3), but offer
much finer detail on what variations within those patterns
lead to energy droughts. Renewable energy droughts occur-
ring when the northeast monsoon is weak are driven by very
low wind energy production and moderately low solar en-
ergy production. Conversely those associated with western
disturbances and summer monsoon withdrawals are related
to very low solar energy production. These contrasting con-
ditions depending on the time of year are interesting, as they
show a potential seasonal cycle in the key drivers of renew-
able energy droughts. This is quite different to the weather
conditions previously discussed for Europe, which tend to
be predominantly driven by winter anticyclones (Bloomfield
et al., 2020).

4 Discussion

Both wind and solar energy production in India have strong
seasonal cycles, which means that almost all renewable en-
ergy droughts occur during the post-monsoon and winter
season. As the weather patterns experienced over India are
strongly determined by the season, this limits the range of
possible weather patterns that could be associated energy

drought days. The analysis of combined wind and solar
drought days is particularly interesting, due to the gener-
ally good complementarity between the resources at national
scale (see Hunt and Bloomfield, 2024. Although it has pre-
viously been noted that the complementarity is better from
May–October than during the winter, when the largest num-
ber of renewable energy droughts are found (Gangopadhyay
et al., 2022a).

The frequency of energy droughts decreases with the
length of the energy drought, which is consistent with pre-
vious studies done over other regions (Otero et al., 2022;
Ohlendorf and Schill, 2020). The longest events seen are 9 d
in the reanalysis period. These events have a return period
of approximately 20 years (as we see two of them in the
43 year period, although we note the uncertainty on this re-
turn period is very high with this many years of data). This
is frequent enough that it would be important to consider for
energy providers in India.

Combined wind and solar energy drought days were found
to mostly be independent of individual solar energy or wind
energy drought days, indicating that they are caused by dif-
ferent weather patterns. This could be low solar generation
on a moderate wind day (e.g. the western disturbance or sum-
mer monsoon withdrawal patterns) or a low wind energy day
with moderate solar power generation (e.g., the weak north-
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eastern monsoon pattern). While these patterns are the pat-
terns that would cause energy drought days with the current
renewable energy capacity, we note that India is strongly in-
vesting in solar energy. This will change the mix of solar and
wind energy, and might result in different weather patterns
causing energy droughts.

Although the MJO and BSISO are predictable up to two to
four weeks out (Lee et al., 2015; Vitart, 2017), it is unlikely
they could give an indication of the probability of an energy
drought occurring at the seasonal to subseasonal timescale
due to their generally weak relationship with renewable en-
ergy drought events. They may be useful, however, in pre-
dicting energy surplus events.

This study focused only on energy production drought,
but analysis into weather patterns causing energy supply
droughts (i.e., also including electricity demand) would be
a useful extension of the analysis.

Recently, Das and Roy (2024) showed that the JRA55 re-
analysis (Kobayashi et al., 2015) provides the best represen-
tation of near-surface wind speeds over India compared to
gridded observations. In the key regions of interest for wind
power production (the West coast, East coast and Interior
peninsula) the wind speed distributions in JRA55 are closest
to the observations with ERA5 performing second best out of
the six reanalysis products that were compared (including the
Indian Monsoon Data Assimilation and Analysis (IMDAA)
regional reanalysis; Rani et al., 2021). ERA5 has been used
in this study as a demonstration of the relationships between
various large-scale classifications and wind and solar power
generation, and due to it’s continual updates. However, fu-
ture work could consider repeating this work with JRA55 to
confirm the accuracy of the findings.

Investment in renewable energy in India is currently
largely skewed towards solar energy. As this would change
the ratio between solar and wind energy capacity, the weather
patterns that have the potential to cause energy droughts now
might not do so in the future. Therefore, analysis into which
weather patterns would cause energy droughts with increased
solar capacity is necessary, as this will give insight into the
weather patterns that will cause energy droughts in the future.

5 Conclusions

This study has investigated the meteorological drivers of re-
newable energy droughts over India under and extreme defi-
nition (lowest 100 d of combined wind and solar power gen-
eration) and the lowest 2.5 % of solar generation, similar to
Raynaud et al. (2018). The key results are given below:

– Renewable energy droughts are most common from
November to February (Fig. 1) and are often multi-day
events. The longest event seen is 9 d (Fig. 2) which hap-
pens twice during the 42 year period.

– There is very little overlap between the days which
would classify as a wind or solar energy drought and
a renewable energy drought. This highlights the com-
plementarity between the two renewables, and that the
renewable energy drought days are driven by moderate
generation by one of the two renewables, and low gen-
eration by the other.

– Renewable energy droughts happen during particular
weather patterns, such as a winter dry period, or a
western disturbance, which have significantly increased
occurrence frequency compared to climatology (see
Fig. 3). These patterns are predictable 10–15 d ahead
(Neal et al., 2020) suggesting they could support sub-
seasonal predictability of renewable energy droughts.

– There are no strong relationships between the MJO or
BSISO and renewable energy droughts (Figs. 4 to 6)
although these patterns may be useful if interested in
renewable energy surpluses (Fig. A1) or average renew-
able conditions (Figs. 4 and 5) given their good subsea-
sonal predictability (Lee et al., 2015; Vitart, 2017).

– Impact-based forecasting patterns highlight the dif-
ferent conditions that may cause a renewable energy
drought including a weak northeastern monsoon pat-
tern, summer monsoon withdrawal and western distur-
bance (Fig. 7).

Given the high explanatory power of these impact-based
patterns, future work will investigate their medium-range to
subseasonal predictability to compare directly to the MJO
and BSISO. It is interesting to understand if there is a trade
off between predictability and links to useful impacts (as dis-
cussed in Bloomfield et al., 2020).

This work is highly relevant for forecasters in India (or
similar regions) looking to understand the critical weather
conditions for energy system security. We note that due to
rapid decarbonisation these patterns need to be revisited ev-
ery ∼ 5 years to make sure that they are still relevant to the
energy system they are describing.
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Appendix A

Figure A1. Occurrence frequency of each BSISO phase (a) and MJO phase (b) on high energy production days and the 14 d beforehand
compared to climatology. The numbers indicate percentage difference from climatology, so −100 means no occurrence of this phase, and
100 means that this phase occurs twice as frequent than its climatological mean. Bars are colored in if they are higher than 50 % or lower
than −50 % as in Cassou (2008).
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