Birner, J., Mayr, C., Thomas, L., Schneider, M., Baumann, T., and Winkler, A.:
Hydrochemie und Genese der tiefen Grundwässer des Malmaquifers im
bayerischen Teil des süddeutschen Molassebeckens Hydrochemistry and
evolution of deep groundwaters in the Malm aquifer in the bavarian part of
the South German Molasse Basin, Z. Geol. Wiss., 39,
http://www.zgw-online.de/en/media/291-113.pdf (last access: 12 May 2023), 2011.
a,
b
Caers, J. and Castro, S.: A Geostatistical Approach to Integrating Data From
Multiple and Diverse Sources: An Application to the Integration of Well Data,
Geological Information, 3d/4d Geophysical and Reservoir-Dynamics Data in a
North-Sea Reservoir, Subsurf. Hydrol. Data Integr. Prop. Process. Geophys.
Monogr. Ser., 171,
https://doi.org/10.1029/171GM07, 2006.
a
Carlé, W.: Die Mineral- und Thermalwässer von Mitteleuropa:
Geologie, Chemismus, Genese, Wissenschaftliche Verlagsgesellschaft,
Stuttgart, ISBN 3 80470461 1, 1975.
a,
b
Deutscher Heilbäderverband and Deutscher Tourismusverband:
Begriffsbestimmungen/Qualitätsstandards für Heilbäder
und Kurorte, Luftkurorte, Erholungsorte – einschließlich der
Prädikatisierungsvoraussetzungen – sowie für Heilbrunnen und
Heilquellen, Tech. Rep., Deutscher Tourismusverband e.V. und Deutscher
Heilbäderverband e.V., 2016. a
Hebig, K. H., Ito, N., Scheytt, T., and Marui, A.: Review: Deep groundwater
research with focus on Germany, Hydrogeol. J., 20, 227–243,
https://doi.org/10.1007/s10040-011-0815-1, 2012.
a,
b
Heine, F., Zosseder, K., and Einsiedl, F.: Hydrochemical Zoning and Chemical
Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using
Water Chemical and Environmental Isotope Data, Water, 13, 1162,
https://doi.org/10.3390/w13091162, 2021.
a
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L.,
O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., and Yasmeen, F.:
forecast: Forecasting functions for time series and linear models, R package
version 8.15,
https://pkg.robjhyndman.com/forecast/ (last access: 16 December 2022), 2021. a
Kabadayi, S., Pridgen, A., and Julien, C.: Virtual sensors: Abstracting data
from physical sensors, Proc. – WoWMoM 2006 2006 Int. Symp. a World Wireless,
Mob. Multimed. Networks, 2006, 587–592,
https://doi.org/10.1109/WOWMOM.2006.115, 2006.
a
Kang, M., Ayars, J. E., and Jackson, R. B.: Deep groundwater quality in the
southwestern United States, Environ. Res. Lett., 14, 034004,
https://doi.org/10.1088/1748-9326/aae93c, 2019.
a
Käss, W. and Käss, H.: Deutsches Bäderbuch, Schweizerb.
Edn., ISBN 978-3-510-65241-9, 2008.
a,
b,
c
Krieger, M., Kurek, K. A., and Brommer, M.: Global geothermal industry data
collection: A systematic review, Geothermics, 104, 102457,
https://doi.org/10.1016/j.geothermics.2022.102457, 2022.
a,
b
Martin, D., Kühl, N., and Satzger, G.: Virtual Sensors, Bus. Inf. Syst.
Eng., 63, 315–323,
https://doi.org/10.1007/s12599-021-00689-w, 2021.
a
Mayrhofer, C., Niessner, R., and Baumann, T.: Hydrochemistry and hydrogen
sulfide generating processes in the Malm aquifer, Bavarian Molasse Basin,
Germany, Hydrogeol. J., 22, 151–162,
https://doi.org/10.1007/s10040-013-1064-2, 2014.
a
Parkhurst, D. L. and Appelo, C. A. J.: Description of input and examples for
PHREEQC versoin 3: a computer program for speciation, batch-reaction,
one-dimensional transport, and inverse geochemical calculations, in: Model.
Tech., Chap. 43, U.S. Geological Survey, Reston, Virginia,
https://doi.org/10.3133/tm6A43, 2013.
a
Porter, D. W., Gibbs, B. P., Jones, W. F., Huyakorn, P. S., Hamm, L. L., and
Flach, G. P.: Data fusion modeling for groundwater systems, J. Contam.
Hydrol., 42, 303–335,
https://doi.org/10.1016/S0169-7722(99)00081-9, 2000.
a,
b,
c
R Core Team: R: a language and environment for statistical computing,
https://www.r-project.org/ (last access: 16 December 2022), 2020.
a,
b
Schölderle, F., Lipus, M., Pfrang, D., Reinsch, T., Haberer, S.,
Einsiedl, F., and Zosseder, K.: Monitoring cold water injections for
reservoir characterization using a permanent fiber optic installation in a
geothermal production well in the Southern German Molasse Basin, Vol. 9,
Springer Berlin Heidelberg,
https://doi.org/10.1186/s40517-021-00204-0, 2021.
a
Tegen, A., Davidsson, P., Mihailescu, R. C., and Persson, J. A.: Collaborative
sensing with interactive learning using dynamic intelligent virtual sensors,
Sensors (Switzerland), 19,
https://doi.org/10.3390/s19030477, 2019.
a