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Abstract. Geothermal waters provide a great resource to
generate clean energy, however, there is a notorious lack
of high quality data on these waters. The scarcity of deep
geothermal aquifer information is largely due to inaccessi-
bility and high analysis costs. However, multiple operators
use geothermal wells in Lower Bavaria and Upper Austria
for balneological (medical and wellness) applications as well
as for heat mining purposes. The state of the art sampling
strategy budgets for a sampling frequency of 1 year. Previ-
ous studies have shown that robust groundwater data requires
sampling intervals of 1–3 months, however, these studies are
based on shallow aquifers which are more likely to be in-
fluenced by seasonal changes in meteorological conditions.
This study set out to assess whether yearly sampling ade-
quately represents sub-yearly hydrochemical fluctuations in
the aquifer by comparing yearly with quasi-continuous hy-
drochemical data at two wells in southeast Germany by as-
sessing mean, trend and seasonality detection among the high
and low temporal resolution data sets. Furthermore, the abil-
ity to produce reliable forecasts based on yearly data was
examined. In order to test the applicability of virtual sen-
sors to elevate the information content of yearly data, cor-
relations between the individual parameters were assessed.
The results of this study show that seasonal hydrochemical
variations take place in deep aquifers, and are not adequately
represented by yearly data points, as they are typically gath-
ered at similar production states of the well and do not show
varying states throughout the year. Forecasting on the basis
of yearly data does not represent the data range of currently
measured continuous data. The limited data availability did
not allow for strong correlations to be determined. We found
that annual measurements, if taken at regular intervals and

roughly the same production rates, represent only a snapshot
of the possible hydrochemical compositions. Neither mean
values, trends nor seasonality was accurately captured by
yearly data. This could lead to a violation of stability criteria
for mineral water, or to problems in the geothermal opera-
tion (scalings, degassing). We thus recommend a new testing
regime of at least 3 samples a year. While not a replacement
for the detailed analyses, under the right circumstances, and
when trained with more substantial data sets, viertual sen-
sors provide a robust method in this setting to trigger further
actions.

1 Introduction

Facing an acute energy crisis and a global climate crisis,
Europe must search for alternative energy sources to im-
ported oil and gas. Deep geothermal waters can provide an
important source of energy. However, there is a notorious
lack of reliable data regarding these waters (Krieger et al.,
2022): current exploitation of deep groundwater consists of
clustered wells which are widely distributed over large ar-
eas, which limits the spatial resolution of available data
points, while sampling and analysis costs (typically between
EUR 1500 and more than EUR 10 000, depending on the
number of parameters) limit the frequency at which hydro-
chemical assessments can be conducted (Alley et al., 2013;
Hebig et al., 2012; Krieger et al., 2022). At meaningful sam-
pling intervals the costs for conventional analyses are on the
same order as the equipment for online-measurements. Since
deep groundwater aquifers play a negligible role in daily
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drinking water provision, these aquifers are not as present in
public interest as, e.g., shallow ground water or surface wa-
ter bodies. However, even the large number of hydrochemical
analyses of groundwater wells available to this study, which
includes research wells, display a similar data scarcity.

Insufficient in-situ data makes numerical modelling of
subsurface dynamics difficult and limits the reliability of
groundwater monitoring networks (Hebig et al., 2012; Caers
and Castro, 2006). Furthermore, deep groundwater acts as
a safety net for times when shallow groundwater resources
are depleted. Monitoring the development of its hydrochem-
ical quality is thus of utmost importance (Kang et al., 2019)
and one of the main purposes of the European Water Frame-
work Directive (WFD) (European Parliament and Council,
2000). This study focuses on a deep geothermal groundwater
body exploited for heat and energy production and medical
spas. In this setting, hydrochemical and geophysical informa-
tion serves as an indicator of the geographical course of the
groundwater’s flow paths. It further helps describe processes
taking place along these flow paths in the rock matrix (Birner
et al., 2011; Mayrhofer et al., 2014; Heine et al., 2021). Ad-
ditionally, fluctuations in the hydrochemical composition can
have severe effects on the longevity of the geothermal power
plant hardware (e.g. corrosion and scaling) and, in the case of
medical wellness applications, on the certification as a med-
ical thermal spa. This information is not only relevant for
present conditions. Forecasts are highly valuable to well op-
erators for long-term sustainable well exploitation strategies
and are explicitly required by the WFD (European Parlia-
ment and Council, 2000).

The state of the art deep groundwater sampling proce-
dure typically budgets for yearly physical and chemical
analyses. This frequency is codified in national guidelines,
such as the “Definitions and Quality Standards for Medi-
cal Wellness” in Germany (Deutscher Heilbäderverband and
Deutscher Tourismusverband, 2016). However, optimal sam-
pling frequency is not an arbitrary value, but can be defined
in terms of providing as much information as possible with as
few sampling points as necessary (Nelson and Ward, 1981).
The term information, in turn, can be defined, in a statistical
sense, in terms of the variance of the mean (Barcelona et al.,
1989): Var(x)= σ 2

·n, where x is the sample mean, σ is the
variance and n is the number of samples. While information
content rises with an increase of samples, given the costs,
redundancies must be avoided (Barcelona et al., 1989).

In 1989, the US Environmental Protection Agency pub-
lished a report on sampling frequency for groundwater qual-
ity monitoring (Barcelona et al., 1989) in which the investi-
gators used data from a bi-weekly sampling campaign to de-
rive optimal sampling intervals for a shallow sand and gravel
aquifer in Illinois, USA. Basing their investigation on the
assessment of auto-correlation and information loss at dif-
ferent sampling intervals, they found an optimal groundwa-
ter sampling frequency of around 2 to 3 months (Barcelona
et al., 1989). In contrast, Zhou (1996) names three quan-

titative components (trend detection, determination of sea-
sonal variability and estimation of mean) through which di-
verging sampling intervals can be compared to each other.
In their case study at Spannenburg Pumping Station in the
Netherlands they derive an optimal sampling interval for hy-
drochemical and geophysical analyses of 1 month. Finan-
cially and logistically, this might pose an impossible sam-
pling strategy for many deep wells. If increasing sampling
frequencies is not an option, elevating information through
virtual sensors (VS) might be a viable alternative. VS are
a software sensor layer which produces signals as indirect
measurements of process variables by combining signals
from physical sensors or other VS, physical laws and sta-
tistical models (Martin et al., 2021; Kabadayi et al., 2006;
Porter et al., 2000). Among the advantages of VS are lower
initial and ongoing costs and their ability to be deployed in
hostile environments where inaccessibility limits the appli-
cation of physical sensors (Tegen et al., 2019), all of which
aids in optimizing maintenance and management processes
(Porter et al., 2000). VS have been applied to groundwater
monitoring applications before: Porter et al. (2000) used data
fusion modeling to construct a groundwater flow model of
a local river site. They point out that data fusion modeling
solves the problem of combining point data for hydraulic
head and conductivity. In order to fill months long data gaps
in time series of a geothermal heating plant’s energy demand,
Baumann et al. (2017) used daily mean air temperatures and
a typical control function for domestic boilers to calculate
produced geothermal energy and derive flow rates and injec-
tion temperatures. Seasonal fluctuations and effects of sud-
den changes in energy demand were also represented with
high accuracy.

Given the common practice of yearly hydrochemical anal-
yses for German deep groundwater wells, which oppose the
points raised in the aforementioned studies regarding opti-
mal sampling frequency determination, the question arises
whether the current sampling strategy accurately represents
true fluctuations taking place in the aquifer. It is important
to note that all studies conducted on this question have fo-
cused on shallow aquifers. It is thus of vital importance
to asses the information content of yearly data in compar-
ison to high frequency data gathered in a deep geothermal
aquifer and explore options of elevating it through VS. In
this study, we compare yearly and daily hydrochemical and
physical (e.g. temperature, pressure, volume) data gathered
in a deep geothermal aquifer in Bavaria, Germany, in order
to answer the following questions: (i) can yearly data ad-
equately represent mean, seasonal variability and trends of
quasi-continuous data? (ii) is yearly data a sufficient base
for long-term forecasting of hydrochemical compositions of
deep groundwater? (iii) can virtual sensors be used to elevate
information content of rudimentary data sets in this environ-
ment?
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2 Methods

2.1 Study Area and Geology

This study uses hydrochemical samples taken at two wells
in the Northern Alpine Foreland Basin (NAFB). Most wa-
ters in the Upper Jurassic Aquifer in the northern and north-
eastern part of the NAFB are characterized as Ca-(Mg)-
HCO3 water with low salinity (< 0.9 g L−1), but there are
waters with total dissolved salts (TDS) values of > 2 g L−1

at the edge of the helvetic facies close to hydrocarbon de-
posits (Birner et al., 2011; Birner, 2013). Inflow from un-
derlying or overlying strata change the general characteris-
tics. Waters from Dogger, Keuper and Lias carry water of the
types sodium-sulfate-bicarbonate (sampled in Bad Überkin-
gen), sodium-chloride-sulfate (sampled in Königshofen), and
sodium-bicarbonate-chloride (sampled in Göppingen), re-
spectively. Their salinities reach values of up to 11 g L−1

in Königshofen (Carlé, 1975). A well in Bad Gögging pro-
duces a sodium-bicarbonate-chloride water with a TDS of
1.3 g L−1 from the Lower Triassic and the crystalline base-
ment (Käss and Käss, 2008). This information is vital for
characterising inflow pathways, and, more importantly, for
analysing changes in these pathways.

2.2 Data

Data was collected from the well BAK at the northern margin
of the NAFB close to Bad Abbach, Germany. The well has a
depth of 676.5 m b.s.l. (well head at 272.56 m a.s.l).

The casing of the well reaches down to 473.20 m and is
cemented against the borehole. The lower part of the bore-
hole from 496.5 to 676.5 m b.s.l. was also cemented. Thus,
the filter screen of the well is located in the sandstones of
the Late Triassic (Käss and Käss, 2008). The clayey strata of
the Lower Jurassic and the lower part of the Middle Juras-
sic serve as impermeable cap rock. However, a connection to
the waters in the crystalline basement can be expected. BAK
produces water of the type sodium-bicarbonate-chloride with
traces of fluoride (Käss and Käss, 2008) for spa applications
only, which are affected by strong seasonal fluctuations.

For the purpose of comparing our outcomes to a well with
a more continuous production regime, we extended our anal-
yses to the data gathered at another NAFB well (“BF2”),
which also produces water of the type sodium-bicarbonate-
chloride with trace amounts of sulphur and fluoride from the
Upper Jurassic (1142.30 m b.s.l.) for the purpose of a medi-
cal spa and year-round power generation. This well produces
geothermal water year-round and thus has a more balanced
production regime.

There are two data sets available for each well: since they
are used for medical spas, they are subject to yearly controls
of the hydrochemical composition (data from 2002–2020 for
BAK and from 2000–2022 for BF2) gathered at the well-
head and analyzed by the lab of T . Baumann at the Insti-

tute for Hydrochemistry and Chemical Balneology at TUM,
hereafter referred to as offline data). Sampling took place
during the summer (±2 weeks) at comparable withdrawal
rates. Samples were taken at the well head and stabilized
as required (e.g. H2S, NH+4 , heavy metals). Temperature,
electrical conductivity (EC) and pH were determined with
sensor probes. Lab analyses were done using standardized
lab equipment and methods (ion chromatography, flame ab-
sorption spectroscopy, atomic adsorption and titration). All
samples presented in this study were taken and analysed by
the same lab technicians. Recently, the wells were equipped
with online sensors which monitor six parameters (Table 1)
in 5 min increments, resulting in a high sampling frequency
data set (hereafter referred to as online data, provided by the
well operators). Table 1 offers detailed information on sam-
pling frequency, sampling period and parameters of the two
data set types.

2.3 Data analysis and forecasting

Although all assessments were calculated for both data sets,
this article focuses on the well BAK. Detailed analysis results
for BF2 can be found in the appendix. Statistical examination
started with a visual comparison of the time series using EC
values. Descriptive time series analysis serves the purpose
of deriving information needed for the determination of an
appropriate sampling interval (Zhou, 1996). EC was chosen
as an indicator of total dissolved salts (TDS) and was avail-
able in all data sets. All assessments were conducted with the
statistical software R (R Core Team, 2020). We conducted
descriptive statistical assessments (calculation of mean, min-
imum, maximum, standard deviation; SD) and produced ker-
nel density plots (R function geom_density::ggplot2) for a
better understanding of the different EC value ranges. In ac-
cordance with the proposed framework by Zhou (1996), we
calculated long-term trends using a linear regression (R func-
tion lm). Seasonality was assessed through time-series de-
composition (R function decompose::stats) for a better un-
derstanding of signal fluctuation frequency.

In order to span gaps in the time series and create a tem-
porally equidistant data set, missing data were projected by
linear interpolation between neighboring analyses (R func-
tion stats::approx).

For the prediction of the development of the hydrochemi-
cal composition, an autoregressive integrated moving aver-
age (ARIMA) model forecast was chosen. This algorithm
assumes the future value of a variable to be a linear func-
tion of a data time series’ several past observations and ran-
dom errors (Zhang, 2003). Due to its simplicity, it consti-
tutes one of the most popular linear forecasting approaches
(Ho and Xie, 1998; Zhang, 2003). We calculated the prog-
nosis based on offline data by using the R function fore-
cast::auto.arima (Hyndman et al., 2021), which automatizes
the forecast given equidistant time series data. Equidistance
in the data set was achieved, like before, through linear inter-
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Table 1. Characteristics of online and offline data sets for the assessed well BAK near Regensburg, Germany.

Data set Temporal Time period Physical parameters Chemical parameters
type resolution

Online 5 min 2013–2021 Drawdown, production rate, pump
state (on/off), temperature, volume
count value

EC

Offline 1 a 2002–2020 Drawdown, production rate,
temperature

pH, EC and 15 individual ions

Figure 1. (a) Density histograms of both online and offline data at BAK. (b) Timelines and linear trend lines of EC-concentrations calculated
for online and offline data. The dashed line shows the trend for the online data set. The solid line indicates the trend line for the offline data
set. (c) Seasonal component of time series decomposition analysis based on the online data set.

polation between neighboring analyses (stats::approx). Us-
ing the same method, a forecast based on the online data was
produced to compare resulting value ranges.

In order to elevate information on individual hydrochemi-
cal constituents to seasonal development, we conducted mul-
tiple linear regression analyses to assess the potential of
these data sets for use in virtual sensors. This was done
with the aim of discerning relationships between offline
and online data in order to extrapolate high temporal res-
olution values of parameters which can realistically only
be measured on a low temporal resolution. In addition to
the individual parameters we defined parameter groups and
ratios: Ca2+/Mg2+ discerning dolomite vs. calcite inflow,
Na+/HCO−3 and (Na+−Cl−)/HCO−3 for discerning inflow
of waters subject to ion exchange, Na+/Cl− to signal saline
inflow dynamics, and Na++K+−−Cl−/HCO−3 for discern-
ing saline versus ion exchange water inflow. The strongest
correlations, as indicated by the Pearson correlation coeffi-
cient (PCC), were then further investigated through specific
regression models. All regression models show a 0.99 confi-
dence area and were computed using the default R package
“stats” (R Core Team, 2020).

A calculation regarding mixing ratios was performed using
the software PhreecC (Parkhurst and Appelo, 2013).

3 Results

In this chapter, results for BAK will be shown in detail and
important results from the analyses of BF2 (Figs. S1 and S2
in the Supplement) are briefly presented.

3.1 Time series analysis

The density graph in Fig. 1a) shows differences in value
ranges between the offline and the online data sets. The
vertical bars indicate the mean values for each data set,
which lie at 3071.72± 109.63 µS cm−1 for online data, and at
3012.35± 97.63 µS cm−1 for offline data (1471.66± 135.02
and 1434.28± 38.05 µS cm−1 respectively for BF2). The
overlapping kernel density curves show a more evenly dis-
tributed curve for the online data set compared to the offline
data set. The larger SD for the online data set represents
the larger variability shown in Fig. 1b) which depicts the
two time series and trend lines calculated for each data set.
Both data sets are characterized by a negative trend, however,
while the offline data resulted in an almost even but mini-
mally negative trend line, the trend derived from the online
data set shows a clearly negative course. Although sampling
period is considerably shorter for the online data, this does
not explain the differences in trend. When we restricted the
offline data to the same sampling period as the online data,
the offline trend became very slightly positive. Thus, online
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and offline data systematically disagree on trend determina-
tion. In BF2, similar differences between the trend lines are
observed, but in this case both trends are positive.

Time series decomposition resulted in Fig. 1c) which de-
picts the seasonal component for one year. A local maximum
in late spring (104.36) and a local minimum in early autumn
(−130.67) mark the seasonal variations. Obviously, offline
data with yearly analyses can not exhibit any seasonal varia-
tions. BF2 did not show any clear seasonal variations.

Inter-annual fluctuations for eight individual ions (Na+,
K+, Ca2+, Mg2+, F−, Cl−, SO2−

4 and HCO−3 ) were also ex-
amined. Over a time span of 20 years, the hydrochemical
analyses show little variation. The highest relative SD val-
ues are displayed by Ca2+ (23.18 %), K+ (20.50 %) and F−

(20.39 %), all of which exhibit low concentrations compared
to the main ingredients.

3.2 ARIMA forecasting

The ARIMA forecasts differ strongly for online and offline
data. Fig. 2a) shows an ARIMA forecast produced on the
basis of offline data. The online data is depicted on top of
the offline data. This shows that the forecast projects an ex-
pected value range which includes the measured offline data,
however, it fails to cover even the currently measured online
data. On the other hand, Fig. 2b) shows the ARIMA forecast
based on online data. The projected value range covers a sig-
nificantly wider area than the forecast based on offline data.
Neither forecasts are able to produce a clear trend.

3.3 Correlation analysis

Among the assessed ions and physical parameters, such as
temperature, extraction volume and drawdown, we found
several strong correlations as indicated by the PCC and visu-
alized them in scatter plots (Fig. 3). Due to the small sample
sizes, many of these correlations were not statistically signif-
icant (based on the p-value and a significance level of 0.05),
however, it is still worth to explore them as they can offer
valuable insights into important hydrogeochemical dynam-
ics. We found the obvious strong connection between draw-
down and extraction volume (R = 0.93; Fig. 3a), but also be-
tween drawdown and EC (R = 0.99; Fig. 3b). Variations in
TDS are covered by the concentration values of bicarbonate
(R = 0.86) and sodium (R = 0.90). None of the calculated
ratios showed any strong correlations with the physical pa-
rameters (R > 0.6) and only with their own constituents.

4 Discussion

This study set out to compare the information values of of-
fline and online data gathered for a geothermal well, assess
whether the current practice of yearly hydrochemical sam-
pling is an adequate strategy on which a robust assessment of
the status-quo and reliable forecasts can be based, and to use

strong correlations between the two data sets to assess the
applicability of virtual sensors to this setting where offline
data fell short of providing critical information. For this, we
assumed that a well’s hydrochemical signature indicates flow
paths, and changes in its signature indicate changes in flow
paths.

One of the most striking pieces of information produced
by this study was the comparison of yearly data, which is
the current sampling standard (e.g. in Germany as mandated
by the German Spa Association (Länderarbeitsgemeinschaft
für Wasser, 1998)), and online data measurements which still
remain scarce. While one could argue that the data sets agree
on similar mean EC values, they differ vastly in their covered
time period, seasonality and trends (Fig. 1).

The higher variation in the online data is not caused by a
change of the operation conditions of the well, which is evi-
dent from the data from 2013 to 2020. Information on oper-
ating conditions was provided by the operators of the well.
Lockdowns due to Covid-19 only affected contained time
spans in 2020 and there were extensions or changes made
to the infrastructure of the medical spa. Accordingly, visitor
numbers stayed relatively constant. It is interesting to note
that the application type of the well is probably responsible
for the amplitude of seasonal variations.

The seasonal fluctuations are controlled by changes in the
spa operation: the number of visitors is highest in winter and
spring and therefore the volume withdrawn is also higher for
these seasons compared to summer months (Fig. 1c). In con-
trast, BF2 does not show seasonal variations in the same way,
because the well produces water continuously for balneolog-
ical uses and heating which leads to more constant produc-
tion rates. On the other hand, it might also indicate less in-
flow from above and below (Fig. S1). However, most aquifers
are structurally heterogeneous and connected to the adjacent
strata above and below. Inflow from these strata is a function
of pressure in the main aquifer, even if their connection is
weak. Increasing production rates lead to a decrease in the
pressure in the main aquifer, which results in a pressure gra-
dient to the adjacent stratigraphic units. If the hydrochemical
composition in these units is different from the main aquifer,
or if the main aquifer is strongly heterogeneous, changes in
TDS (measured by EC probes at the well head) are to be ex-
pected. However, this correlation shows temporal dependen-
cies which span over long periods, i.e. correlation between
production rate and EC differ depending on the production
regime leading up to the sampling date. This is a clear sign
that the offline data fail to represent the hydrochemical state
of the groundwater well at seasonally varying operating con-
ditions. An assessment based on offline data alone will thus
underestimate the contribution of other strata to the main
aquifer.

Variability of the online data does show changes within
the recorded time span. This corresponds with the trends de-
tected in both data sets which differ starkly (Fig. 1b).
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Figure 2. ARIMA forecasts for EC values at BAK. The forecast ranges are depicted in light blue: 85 % confidence interval; light grey: 95 %
confidence interval. (a) forecast based on offline EC data, as well as overlaid online EC data. (b) forecast based on online EC data.

Overall, by omitting sub-yearly, seasonal fluctuations, the
offline data set merely offers a snapshot of the well’s hy-
drochemical state. The snapshot is limited in its informative
value to the sampling date and does not provide any infor-
mation on between-sampling fluctuations. This can lead to
misjudgments on the hydrochemical stability of the well and
seasonal activation of additional inflow pathways. Time se-
ries decomposition derived a seasonal variation frequency of
1 year (Fig. 1b). Accordingly, the Nyquist-Theorem demands
that the sampling frequency be higher than one sample ev-
ery six months in order to adequately represent the fluctua-
tions with a 12 month period. We thus suggest a sampling
frequency of 4 to 5 months which is higher than the current
practice of one sample a year, but lower than the suggested
frequencies by Zhou (1996) of 1 month, and by Barcelona
et al. (1989) of 2 to 3 months. Their high sampling fre-
quencies are likely due to stronger sub-seasonal variations
in shallow ground water aquifers, by which deep ground wa-
ter aquifers, such as the one in this study, are less impacted.
However, this study showed that clear seasonal variations can
also be found in deep ground water aquifers. The proposed
scheme is applicable to all deep groundwater wells except
for cases where the confining layers prevent any inflow from
above or below at the well and in its vicinity. In this case, the
water originates only from the reservoir and will not show
any change in the flow pattern due to changes.

We further demonstrated that the ARIMA forecast for EC
values, built upon offline data, neglects to consider even cur-
rently observed, sub-yearly EC concentration fluctuations.
Due to the sampling bias, the forecast based on offline data
(Fig. 2a) shows a rather small prediction interval and no
trend. This is in line with very little variations of the hy-
drochemical composition observed over the years. The fore-
cast based on online data reveals a great uncertainty but
still no trend. This indicates that changes in the flow pat-
terns to this particular well are fully reversible and points
to a hydraulic activation of flow paths in a heterogeneous
reservoir, rather than an influx from overlying or underly-
ing stratigraphic units as seen e.g. at the Pullach Th2 well

(Baumann et al., 2017). Part of the uncertainty can also be
attributed to the shorter time span of online data. In the case
of this well, we showed conclusively that a forecast, as re-
quired for many deep ground water aquifers by the WFD,
based on yearly measurements, fails to represent sub-yearly
variations in EC, and only represents one very specific state
of the well. Thus, forecasting needs to be conducted with
higher-resolution data in order to take these developments
into account.

Having shown that yearly groundwater sampling does not
adequately represent real hydrochemical fluctuations in the
reservoir, the possibilities of applying VS in this field were
tested. While we found some correlations with a high PCC,
the correlations were rarely statistically significant (Fig. 3).
This is due to the small size of the available data sets.
There was an expected correlation between the production
rate (or drawdown) and temperature. The correlation be-
tween water temperature and TDS might point to different
flow patterns. The correlation between EC and drawdown
allowed insights into some hydrochemical dynamics. The
hydrochemical signature of the two most divergent analy-
ses in our correlation assessment show slightly lower TDS:
Na+, Cl−, and HCO−3 show lower concentrations, K+, Ca2+,
and SO2−

4 show higher concentrations. Assuming a minor
change of the flow pattern at high production rate with
an influx of 7 % of another water type, the calculated in-
flow water is a K+−Ca2+

−HCO−3 −SO2−
4 − type with a

TDS of 1100 mg L−1. The saturation indices calculated with
PhreeqC show that the water is in equilibrium with dolomite,
and under-saturated (saturation index=−1) with respect to
gypsum. The calculated hydrochemistry of the in-flowing
water does not fit waters of the crystalline basement or the
overlying sandstones of the lower Jurassic (Carlé, 1975).
Furthermore, the variations recorded by the online measure-
ments are much larger compared to the analysis data. There-
fore, the hydrochemistry of the in-flowing water would cause
an even starker contrast to the assumed composition. Assum-
ing a mix with 50 % of another water type leads to similar
TDS and hydrochemical signature, and would indicate lithos-
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Figure 3. Selection of univariate regressions marked by a high Pearson correlation coefficients based on the offline data set at BAK. The blue
line indicates the linear regression model, the grey shaded area shows the 99 % confidence interval.

tratigraphic heterogeneity or hydrochemical stratification in
the reservoir.

To make use of VS to span data gaps and assess dynamic
changes of the inflow pathways to the well, a number of pre-
requisites have to be met. The relationships between offline
and online data sets must be based on larger data sets than
are currently available to ensure statistically significant cor-
relations. However, stronger data might also include the fol-
lowing: ideally, flow-meter logs and/or fibre optical measure-
ments (Schölderle et al., 2021) are available to define the im-
mediate inflow zones to the well at different production rates.
To assess inflow from adjacent strata, pumping tests during
exploration or information from wells close by and reach-
ing into these strata can provide relevant information. The
relation between production rate and hydrochemical charac-
teristics can be obtained from pumping tests with different
production rates. Long-term hydrochemical data can provide
information about inflow zones further away from the well.
Finally, under ideal conditions, a hydrogeochemical model
framework to assess the interactions and reactions of the
(mixed) waters along the flow paths is available.

5 Conclusions

This study showed that on the basis of two wells, one which
is solely used for balneological purposes, and one which
is exploited for balneology and constant energy production,
the current state of the art practice of yearly hydrochemi-
cal measurements fail to accurately represent trend, mean
and seasonality. It is thus of great importance that more data
with high temporal resolution is made available. Since direct
physical measurements of the variables in question are finan-

cially and physically impossible, virtual sensors could offer
a viable alternative. We thus conclude that:

1. Yearly samples taken at the same stress state are under-
estimating the hydrochemical variations of the produced
waters. This is relevant for balneological and geother-
mal applications with regards to the legal framework
pertaining to recognition as medical spas, and predic-
tive maintenance and prevention of corrosion and scal-
ing, respectively.

2. Basing hydrochemical forecasting algorithms, such as
ARIMA, on yearly data did not result in reliable value
ranges. The calculated ranges failed to include even cur-
rently measured sub-yearly signal response variability
when used on EC data.

3. Online data provide quantitative access to the nature
of the processes responsible for changes in the hydro-
chemical conditions, and whether they are reversible or
not. However, online data require careful hydrochemi-
cal characterization of the well (hydrochemical pump-
ing tests, hydrochemical and hydraulic logs, depth ori-
ented sampling) to make full use of their predictive po-
tential, e.g. use in VS applications.

Knowing the precise fluctuations of the individual ions,
TDS and overall hydrochemical composition is important
knowledge for predictive maintenance and serves as an indi-
cator and warning signal for unsustainable groundwater ex-
traction schemes. For this, we estimate that sensor fusion in
the framework of geothermal science is possible if there is a
proper prior characterization of the reservoir, and the hydro-
chemical characteristics in the different parts of the reservoir
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are known. In order to achieve larger training data sets, it is
crucial that hydrochemical assessments take place more of-
ten than once a year.

Overall, more frequent sampling at different production
scenarios, and learning algorithms in combination with mix-
ing models will aid implementing VS to the field of geother-
mal water production.
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