Articles | Volume 56
https://doi.org/10.5194/adgeo-56-155-2022
https://doi.org/10.5194/adgeo-56-155-2022
14 Jan 2022
 | 14 Jan 2022

Day-ahead energy production in small hydropower plants: uncertainty-aware forecasts through effective coupling of knowledge and data

Korina-Konstantina Drakaki, Georgia-Konstantina Sakki, Ioannis Tsoukalas, Panagiotis Kossieris, and Andreas Efstratiadis

Related authors

A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources
Elli Klousakou, Maria Chalakatevaki, Panayiotis Dimitriadis, Theano Iliopoulou, Romanos Ioannidis, Georgios Karakatsanis, Andreas Efstratiadis, Nikos Mamasis, Romina Tomani, Efthimis Chardavellas, and Demetris Koutsoyiannis
Adv. Geosci., 45, 193–199, https://doi.org/10.5194/adgeo-45-193-2018,https://doi.org/10.5194/adgeo-45-193-2018, 2018
A curve number approach to formulate hydrological response units within distributed hydrological modelling
Eleni Savvidou, Andreas Efstratiadis, Antonis D. Koussis, Antonis Koukouvinos, and Dimitrios Skarlatos
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-627,https://doi.org/10.5194/hess-2016-627, 2016
Manuscript not accepted for further review
Short summary
Flood design recipes vs. reality: can predictions for ungauged basins be trusted?
A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis
Nat. Hazards Earth Syst. Sci., 14, 1417–1428, https://doi.org/10.5194/nhess-14-1417-2014,https://doi.org/10.5194/nhess-14-1417-2014, 2014

Cited articles

Cassagnole, M., Ramos, M.-H., Zalachori, I., Thirel, G., Garçon, R., Gailhard, J., and Ouillon, T.: Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach, Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, 2021. 
Coccia, G. and Todini, E.: Recent developments in predictive uncertainty assessment based on the model conditional processor approach, Hydrol. Earth Syst. Sci., 15, 3253–3274, https://doi.org/10.5194/hess-15-3253-2011, 2011. 
Croonenbroeck, C. and Stadtmann, G.: Renewable generation forecast studies – Review and good practice guidance, Renew. Sust. Energ. Rev., 108, 312–322, https://doi.org/10.1016/j.rser.2019.03.029, 2019. 
Drakaki, K. K.: corinadrakaki/Day-ahead-energy-production-in-small-hydropower-plants: (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5843449, 2022. 
Efstratiadis, A.: Daily inflow and rainfall data, Zenodo [data set], https://doi.org/10.5281/zenodo.5841828, 2022. 
Download
Short summary
Since the problem of energy forecasting in SHPPs without storage capacity is little explored, we apply simple schemes to investigate: (a) the essential model structure and information; (b) the advantages of first using a flow forecasting model, instead of a direct energy forecasting; (c) the importance of rainfall data, as a proxy of the catchment state; (d) the training procedure and performance measure; and (e) the representation of predictive uncertainty and its practical interpretation.