Efstratiadis, A., Tegos, A., Varveris, A., and Koutsoyiannis, D.: Assessment
of environmental flows under limited data availability – Case study of the
Acheloos River, Greece, Hydrol. Sci. J., 59, 731–750,
https://doi.org/10.1080/02626667.2013.804625, 2014.
Efstratiadis, A., Nalbantis, I., and Koutsoyiannis, D.: Hydrological
modelling of temporally-varying catchments: Facets of change and the value
of information, Hydrol. Sci. J., 60, 1438–1461,
https://doi.org/10.1080/02626667.2014.982123, 2015.
Felder, M., Sehnke, F., Ohnmeiß, K., Schröder, L., Junk, C., and Kaifel, A.: Probabilistic short term wind power forecasts using deep neural networks with discrete target classes, Adv. Geosci., 45, 13–17, https://doi.org/10.5194/adgeo-45-13-2018, 2018.
Galelli, S. and Castelletti, A.: Tree-based iterative input variable
selection for hydrological modelling, Water Resour. Res., 49,
4295–4310, https://doi.org/10.1002/wrcr.20339, 2013.
Kossieris, P., Tsoukalas, I., Makropoulos, C., and Savic, D.: Simulating
marginal and dependence behaviour of water demand processes at any fine time
scale, Water, 11, 885, https://doi.org/10.3390/w11050885, 2019.
Li, G., Li, B.-J., Yu, X.-G., and Cheng, C.-T.: Echo state network with
Bayesian regularization for forecasting short-term power production of small
hydropower plants, Energies, 8, 12228–12241,
https://doi.org/10.3390/en81012228, 2015.
Monteiro, C., Ramirez-Rosado, I. J., and Fernandez-Jimenez, L. A.:
Short-term forecasting model for electric power production of small-hydro
power plants, Renew. Energ., 50, 387–394,
https://doi.org/10.1016/j.renene.2012.06.061, 2013.
Ólafsson, H. and Ágústsson, H.: Mesoscale orographic flows, in:
Ólafsson, H., and Bao, J.-W., Uncertainties in Numerical Weather
Prediction, Chapter 11, Elsevier, 297–308,
https://doi.org/10.1016/B978-0-12-815491-5.00011-2, 2021.
Papacharalampous, G., Tyralis, H., Langousis, A., Jayawardena, A. W.,
Sivakumar, B., Mamassis, N., Montanari, A., and Koutsoyiannis, D.:
Probabilistic hydrological post-processing at scale: Why and how to apply
machine-learning quantile regression algorithms, Water, 11, 2126,
https://doi.org/10.3390/w11102126, 2019.
Papantonis, D. E.: Small Hydroelectric Works, 2nd edition, Symeon Editions,
Athens, 2008 (in Greek).
Ribeiro, M. T., Singh, S., and Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144, https://doi.org/10.1145/2939672.2939778, 2016.
Sakki, G.-K., Tsoukalas, I., Kossieris, P., and Efstratiadis, A.: A dilemma of small hydropower plants: Design with uncertainty or uncertainty within design?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2398, https://doi.org/10.5194/egusphere-egu21-2398, 2021.
Sakki, G.-K., Tsoukalas, I., and Efstratiadis, A.: A reverse engineering approach across small hydropower plants: a hidden treasure of hydrological data?, Hydrol. Sci. J., accepted, 67, https://doi.org/10.1080/02626667.2021.2000992, 2022.
Talari, S., Shafie-Khah, M., Osório, G. J., Aghaei, J., and Catalão,
J. P. S.: Stochastic modelling of renewable energy sources from operators'
point-of-view: A survey, Renew. Sust. Energ. Rev., 81, 1953–1965,
https://doi.org/10.1016/j.rser.2017.06.006, 2018.
Tsoukalas, I.: Modelling and simulation of non-Gaussian stochastic processes
for optimization of water-systems under uncertainty, PhD thesis, Dept. of
Civil Engineering, National Technical University of Athens, available
at:
https://www.itia.ntua.gr/1933/ (last access: 6 January 2022), 2018.
Tsoukalas, I., Efstratiadis, A., and Makropoulos, C.: Stochastic periodic
autoregressive to anything (SPARTA): Modelling and simulation of
cyclostationary processes with arbitrary marginal distributions, Water
Resour. Res., 54, WRCR23047,
https://doi.org/10.1002/2017WR021394, 2018.
Tsoukalas, I., Kossieris, P., and Makropoulos, C.: Simulation of non-Gaussian
correlated random variables, stochastic processes and random fields:
Introducing the anySim R-Package for environmental applications and beyond,
Water, 12, 1645, https://doi.org/10.3390/w12061645, 2020.
Yildiz, C. and Açikgöz, H.: Forecasting diversion type hydropower
plant generations using an artificial bee colony based extreme learning
machine method, Energ. Source. Part B,
16, 216–234, https://doi.org/10.1080/15567249.2021.1872119, 2021.