Barzaghi, R., Borghi, A., and Sona, G.: New Covariance Models for Local
Applications of Collocation, in: IV Hotine-Marussi
Symposium on Mathematical Geodesy, edited by: Benciolini, B., IAG Symposia,
Springer, Berlin, Heidelberg, 122, 91–101, https://doi.org/10.1007/978-3-642-56677-6_15, 2001.
Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J. M., Marty, J. C.,
Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R.: EIGEN-6C4 The
latest combined global gravity field model including GOCE data up to degree
and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services,
https://doi.org/10.5880/icgem.2015.1, 2014.
Keller, W.: A Wavelet Solution to 1D Non-Stationary Collocation with
Extension to the 2D Case, in: Gravity, Geoid and Geodynamics 2000, edited by: Sideris, M. G., IAG Symposia,
Springer, Berlin, Heidelberg, 123, 79–84, https://doi.org/10.1007/978-3-662-04827-6_13, 2002.
Kiamehr, R.: Evaluation of the New Earth Gravitational Model (EGM2008) in
Iran, presented at European Geosciences Union General Assembly 2009, Vienna,
Austria, 2009.
Knudsen, P.: Estimation and modelling of the local empirical covariance
function using gravity and satellite altimeter data, B. Geod., 61, 145–160, https://doi.org/10.1007/BF02521264, 1987.
Kotsakis, C.: Least-squares collocation with covariance-matching
constraints, J. Geod., 81, 661–677, https://doi.org/10.1007/s00190-007-0133-5, 2007.
Moritz, H.: Advanced Physical Geodesy, Herbert Wichmann Verlag, Karlsruhe, 1980.
NASA: NASA Shuttle Radar Topography Mission Global 1 arc second, Data
set, NASA LP DAAC, https://doi.org/10.5067/measures/srtm/srtmgl1.003, 2013.
Paciorek, C. J.: Nonstationary Gaussian Processes for Regression and
Spatial Modelling, PhD thesis, Carnegie Mellon University, Pittsburgh, USA, 2003.
Ramouz, S., Afrasteh, Y., Reguzzoni, M., Safari, A., and Saadat, A.:
IRG2018: A regional geoid model in Iran using Least Squares Collocation,
Studia Geophysica et Geodaetica, 63, 191–214, https://doi.org/10.1007/s11200-018-0116-4, 2019.
Rapp, R. H.: The relationship between mean anomaly block sizes and spherical
harmonic representations, J. Geophys. Res., 82, 5360–5364, https://doi.org/10.1029/JB082i033p05360,
1977.
Saadat, A., Safari, A., and Needell, D.: IRG2016: RBF-based regional geoid
model of Iran, Studia Geophysica et Geodaetica, 62, 380–407, https://doi.org/10.1007/s11200-016-0679-x, 2018.
Sansò, F.: Statistical Methods in Physical Geodesy, in: Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, edited by: Sünkel, M., Springer, Berlin, Heidelberg, 7, 49–155,
https://doi.org/10.1007/BFb0010132, 1986.
Sansò, F. and Sideris, M. G.: Geoid Determination: Theory and Methods, Springer-Verlag, Berlin Heidelberg,
https://doi.org/10.1007/978-3-540-74700-0, 2013.
Tscherning, C. C.: Construction of anisotropic covariance functions using
sums of Riesz-representers, J. Geod., 73, 332–336, https://doi.org/10.1007/s001900050250, 1999.
Tscherning, C. C. and Rapp, R.: Closed Covariance Expressions for Gravity
Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by
Anomaly Degree Variance Models, Report 208, Department of Geodetic Science,
The Ohio State University, Columbus, 1974.
Yildiz, H., Forsberg, R., Ågren, J., Tscherning, C. C., and Sjöberg,
L. E.: Comparison of Remote Compute Restore and Least Squares Modification
Stokes' Formula Techniques to Quasi-Geoid Determination over Auvergne Test
Area, J. Geod. Sci., 2, 53–64, https://doi.org/10.2478/v10156-011-0024-9, 2012.