Multi-constellation GNSS orbit combination based on MGEX products
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Section 1.1 – Space Geodetic Techniques, Potsdam, Germany
Technische Universität Berlin, Institute for Geodesy and Geoinformation Technology, Faculty VI, Berlin, Germany
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Section 1.1 – Space Geodetic Techniques, Potsdam, Germany
Benjamin Männel
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Section 1.1 – Space Geodetic Techniques, Potsdam, Germany
Harald Schuh
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Section 1.1 – Space Geodetic Techniques, Potsdam, Germany
Technische Universität Berlin, Institute for Geodesy and Geoinformation Technology, Faculty VI, Berlin, Germany
Related authors
No articles found.
S. Naderi Salim, M. M. Alizadeh, S. Chamankar, and H. Schuh
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 575–580, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-575-2023, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-575-2023, 2023
S. Nasr-Azadani, M.M. Alizadeh, and H. Schuh
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 595–602, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-595-2023, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-595-2023, 2023
Chaiyaporn Kitpracha, Robert Heinkelmann, Markus Ramatschi, Kyriakos Balidakis, Benjamin Männel, and Harald Schuh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-238, https://doi.org/10.5194/amt-2022-238, 2022
Preprint withdrawn
Short summary
Short summary
In this study, we expected to learn what are the potential effects of GNSS atmospheric delays from this unique experiment. The results show that the instrument effects on GNSS zenith delays were mitigated by using the same instrument. The radome causes unexpected bias of GNSS zenith delays in this study. In order to calibrate the instrumental effects, we set up the GNSS co-location site experiment to demonstrate calibrating GNSS instrumental effects.
Benjamin Männel, Florian Zus, Galina Dick, Susanne Glaser, Maximilian Semmling, Kyriakos Balidakis, Jens Wickert, Marion Maturilli, Sandro Dahlke, and Harald Schuh
Atmos. Meas. Tech., 14, 5127–5138, https://doi.org/10.5194/amt-14-5127-2021, https://doi.org/10.5194/amt-14-5127-2021, 2021
Short summary
Short summary
Within the MOSAiC expedition, GNSS was used to monitor variations in atmospheric water vapor. Based on 15 months of continuously tracked data, coordinates and hourly zenith total delays (ZTDs) were determined using kinematic precise point positioning. The derived ZTD values agree within few millimeters with ERA5 and terrestrial GNSS and VLBI stations. The derived integrated water vapor corresponds to the frequently launched radiosondes (0.08 ± 0.04 kg m−2, rms of the differences of 1.47 kg m−2).
Chaiyaporn Kitpracha, Robert Heinkelmann, Markus Ramatschi, Kyriakos Balidakis, Benjamin Männel, and Harald Schuh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-87, https://doi.org/10.5194/amt-2021-87, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we expected to learn what are the potential effects of GNSS atmospheric delays from this unique experiment. The results show that the instrument effects on GNSS zenith delays were mitigated by using the same instrument. The radome causes unexpected bias of GNSS zenith delays in this study. Additionally, multipath effects at low-elevation observations degraded the tropospheric east gradients.
Xiao Chang, Benjamin Männel, and Harald Schuh
Adv. Geosci., 55, 33–45, https://doi.org/10.5194/adgeo-55-33-2021, https://doi.org/10.5194/adgeo-55-33-2021, 2021
Short summary
Short summary
This study focuses on the comparison of different solar radiation pressure (SRP) strategies combined with a-priori information and empirical SRP parameterization. Analysis of precise orbits as well as estimated empirical SRP parameters based on various SRP strategies shows visible differences and indicates the deficiencies of a-priori model or empirical parameterization. The orbit difference patterns presented in this study may give the view on how to improve the current SRP models.
Zhilu Wu, Yanxiong Liu, Yang Liu, Jungang Wang, Xiufeng He, Wenxue Xu, Maorong Ge, and Harald Schuh
Atmos. Meas. Tech., 13, 4963–4972, https://doi.org/10.5194/amt-13-4963-2020, https://doi.org/10.5194/amt-13-4963-2020, 2020
Short summary
Short summary
The HY-2A calibration microwave radiometer (CMR) water vapor product is validated using ground-based GNSS observations along the coastline and shipborne GNSS observations over the Indian Ocean. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV, with 2.67 mm in rms within 100 km and an RMS of 1.57 mm with shipborne GNSS for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well.
Ankur Kepkar, Christina Arras, Jens Wickert, Harald Schuh, Mahdi Alizadeh, and Lung-Chih Tsai
Ann. Geophys., 38, 611–623, https://doi.org/10.5194/angeo-38-611-2020, https://doi.org/10.5194/angeo-38-611-2020, 2020
Short summary
Short summary
The paper focuses on the analyses of the global occurrence of equatorial plasma bubble events using S4 data that were calculated from GPS radio occultation measurements of the FormoSat-3/COSMIC mission. The advantage in using radio occultation data is that we get information not only on the occurrence and intensity of the equatorial bubble events, but also on the altitude distribution. We analyzed a 10.5-year time series of COSMIC data and demonstrated a strong dependence on the solar cycle.
S. Khajeh, A. A. Ardalan, and H. Schuh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W18, 597–603, https://doi.org/10.5194/isprs-archives-XLII-4-W18-597-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W18-597-2019, 2019
E. Sinem Ince, Franz Barthelmes, Sven Reißland, Kirsten Elger, Christoph Förste, Frank Flechtner, and Harald Schuh
Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, https://doi.org/10.5194/essd-11-647-2019, 2019
Short summary
Short summary
ICGEM is a non-profit scientific service that contributes to any research area in which the use of gravity information is essential. ICGEM offers the largest collection of global gravity field models, interactive calculation and visualisation services and delivers high-quality datasets to researchers and students in geodesy, geophysics, glaciology, hydrology, oceanography, and climatology and most importantly general public. Static, temporal, and topographic gravity field models are available.
Cuixian Lu, Florian Zus, Maorong Ge, Robert Heinkelmann, Galina Dick, Jens Wickert, and Harald Schuh
Atmos. Meas. Tech., 9, 5965–5973, https://doi.org/10.5194/amt-9-5965-2016, https://doi.org/10.5194/amt-9-5965-2016, 2016
Short summary
Short summary
The recent dramatic development of multi-GNSS constellations brings great opportunities and potential for more enhanced precise positioning, navigation, timing, and other applications. In this contribution, we develop a numerical weather model (NWM) constrained PPP processing system to improve the multi-GNSS precise positioning. Compared to the standard PPP solution, significant improvements of both convergence time and positioning accuracy are achieved with the NWM-constrained PPP solution.
Cited articles
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.:
ITRF2014: A new release of the International Terrestrial Reference Frame
modeling nonlinear station motions, J. Geophys. Res.-Sol. Ea., 121, 6109–6131, https://doi.org/10.1002/2016JB013098, 2016. a
Arnold, D., Meindl, M., Beutler, G., Dach, R., Schaer, S., Lutz, S., Prange,
L., Sośnica, K., Mervart, L., and Jäggi, A.: CODE's new solar
radiation pressure model for GNSS orbit determination, J. Geodesy,
89, 775–791, https://doi.org/10.1007/s00190-015-0814-4, 2015. a
Beutler, G., Kouba, J., and Springer, T.: Combining the orbits of the IGS
Analysis Centers, B. Geod., 69, 200–222, https://doi.org/10.1007/BF00806733, 1995. a
Chen, J., Wu, B., Hu, X., and Li, H.: SHA: The GNSS Analysis Center at SHAO,
in: China Satellite Navigation Conference (CSNC) 2012 Proceedings, edited by:
Sun, J., Jiao, W., Wu, H., and Shi, C.,Lecture Notes in
Electrical Engineering, Springer Berlin Heidelberg, Berlin,
Heidelberg, 243, 213–221, https://doi.org/10.1007/978-3-642-29175-3_19, 2012. a
CSNO: The BDS-3 Preliminary System Is Completed to Provide Global Services,
available at: http://en.beidou.gov.cn/WHATSNEWS/201812/t20181227_16837.html (last access: 13 February 2020),
2018. a
Deng, Z., Fritsche, M., Nischan, T., and Bradke, M.: Multi-GNSS ultra rapid
orbit-, clock-& EOP-product series, GFZ Data Services, Potsdam, available at: http://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:1739888 (last access: 13 February 2020),
https://doi.org/10.5880/GFZ.1.1.2016.003, 2016. a
ESA: Galileo begin serving the globe,
available at: http://www.esa.int/Our_Activities/Navigation/Galileo_begins_serving_the_globe (last access: 13 February 2020),
2016. a
Fritsche, M.: Multi-GNSS orbit and clock combination: Preliminary results,
in: IGS Workshop 2016, Sydney, Australia, 2016. a
Guo, J., Xu, X., Zhao, Q., and Liu, J.: Precise orbit determination for
quad-constellation satellites at Wuhan University: strategy, result
validation, and comparison, J. Geodesy,
https://doi.org/10.1007/s00190-015-0862-9, 2016. a
Johnston, G., Riddell, A., and Hausler, G.: The International GNSS Service,
in: Springer Handbook of Global Navigation Satellite Systems, pp. 967–982,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-42928-1_33,
2017. a
Katsigianni, G., Loyer, S., Perosanz, F., Mercier, F., Zajdel, R., and
Sośnica, K.: Improving Galileo orbit determination using
zero-difference ambiguity fixing in a Multi-GNSS processing, Adv.
Space Res., 63, 2952–2963, https://doi.org/10.1016/j.asr.2018.08.035, 2018. a
Kouba, J.: A Guide to using international GNSS Service (IGS) Products,
Geodetic Survey Division Natural Resources, Canada, Ottawa, 6, 34 pp., 2015. a
Loyer, S., Perosanz, F., Versini, L., Katsigianni, G., Mercier, F., and
Mezerette, A.: CNES/CLS IGS Analysis center: recent activities, in: IGS
Workshop 2018, Wuhan, 2018. a
Luzum, B. and Gambis, D.: Explanatory Supplement to Bulletins A and Bulletin
B/C04, Tech. rep., Observatoire de Paris, Paris, 2014. a
Molodensky, M., Eremeev, V., and Yurkina, M.: Methods for the Study of the
External Gravitational Field and Figure of the Earth, Israel Program for
Scientific Translations, Jerusalem, 1962. a
Montenbruck, O., Steigenberger, P., Prange, L., Deng, Z., Zhao, Q., Perosanz,
F., Romero, I., Noll, C., Stürze, A., Weber, G., Schmid, R., MacLeod,
K., and Schaer, S.: The Multi-GNSS Experiment (MGEX) of the International
GNSS Service (IGS) – Achievements, prospects and challenges, Adv.
Space Res., 59, 1671–1697, https://doi.org/10.1016/j.asr.2017.01.011, 2017 (data available at: ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/, last access: 13 February 2020). a, b, c
National Space Policy Secretariat, C. O.: Start of QZSS Services,
available at: https://sys.qzss.go.jp/dod/en/constellation.html (last access: 13 February 2020), 2019. a
Prange, L., Dach, R., Lutz, S., Schaer, S., and Jäggi, A.: The CODE MGEX
Orbit and Clock Solution, : IAG 150 Years. International Association of Geodesy Symposia, Springer, Cham., 143, 767–773, https://doi.org/10.1007/1345_2015_161,
2015. a
Prange, L., Orliac, E., Dach, R., Arnold, D., Beutler, G., Schaer, S., and
Jäggi, A.: CODE's five-system orbit and clock solution – the
challenges of multi-GNSS data analysis, J. Geodesy, 91, 345–360,
https://doi.org/10.1007/s00190-016-0968-8, 2017. a
Prange, L., Arnold, D., Dach, R., Schaer, S., Sidorov, D., Stebler, P.,
Villiger, A., and Jäggi, A.: CODE product series for the IGS-MGEX
project, Astronomical Institute, University of Bern, Bern, https://doi.org/10.7892/boris.75882.2, 2018. a
Rao Satellite Centre, D. O. S.: IRNSS – Indian Regional Navigation Satellite
System, available at: https://www.isac.gov.in/navigation/irnss.jsp (last access: 13 February 2020), 2019. a
Rebischung, P., Altamimi, Z., Ray, J., and Garayt, B.: The IGS contribution to
ITRF2014, J. Geodesy, 90, 611–630, https://doi.org/10.1007/s00190-016-0897-6, 2016. a
Sakic, P., Mansur, G., Viegas, E., Männel, B., and Schuh, H.: Towards a
Multi-Constellation combination: Improving the IGS orbit and clock
combination software for MGEX products, in: IGS Workshop 2018, Wuhan,
https://doi.org/10.13140/RG.2.2.10510.41284/1, 2018.
a, b, c, d
Selmke, I., Duan, B., and Hugentobler, U.: Status of the TUM MGEX orbit and
clock products, in: IGS Workshop 2018, Wuhan,
https://doi.org/10.1007/s00190-014-0774-0, 2018. a
Sidorov, D., Dach, R., Prange, L., and Jäggi, A.: Improved orbit
modelling of Galileo satellites during eclipse seasons, IGS Workshop 2018,
https://doi.org/10.7892/boris.121104, 2018. a
Sidorov, D., Dach, R., Prange, L., and Jäggi, A.: Advancing the orbit
model for Galileo satellites during the eclipse seasons, in: Swiss National
Report on the Geodetic Activities in the years 2015–2019, edited by:
Mueller-Gantenbein, J., Brockmann, E., Marti, U., Rothacher, M., and
Merminod, B., pp. 38–39, Swiss Geodetic Commission, XXVII General Assembly
of the IUGG, Montreal, 2019. a
Springer, T. A. and Beutler, G.: Towards an official IGS orbit by combining
the results of all IGS Processing Centers, in: Proceedings of the 1993 IGS
Workshop, March 1993, pp. 24–26, 1993. a
Uhlemann, M., Gendt, G., Ramatschi, M., and Deng, Z.: GFZ Global Multi-GNSS
Network and Data Processing Results, in: International Association of
Geodesy Symposia, 12, 673–679, https://doi.org/10.1007/1345_2015_120, 2015. a
Xu, G.: GPS, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-540-72715-6, 2007. a
Short summary
Nowadays, new GNSS, like European Galileo or Chinese Beidou are available. Some members of the International GNSS Service (IGS) provide multi-GNSS precise satellite orbits, but no final orbit combination exists yet. We developed a new algorithm to combine satellite orbits for all GNSS constellations. Two different strategies were applied. To validate our results we compared our GPS orbits with the official IGS orbits. Our results show that the best strategy applied reached an agreement ~15 mm.
Nowadays, new GNSS, like European Galileo or Chinese Beidou are available. Some members of the...