Future TRFs and GGOS – where to put the next SLR station?
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische Universität München, 80333 München, Germany
Mathis Bloßfeld
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische Universität München, 80333 München, Germany
Peter König
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische Universität München, 80333 München, Germany
Florian Seitz
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische Universität München, 80333 München, Germany
Related authors
Hendrik Hellmers, Daniela Thaller, Mathis Bloßfeld, Alexander Kehm, and Anastasiia Girdiuk
Adv. Geosci., 50, 49–56, https://doi.org/10.5194/adgeo-50-49-2019, https://doi.org/10.5194/adgeo-50-49-2019, 2019
Short summary
Short summary
The combination of VLBI Intensive and GNSS Rapid products on the base of Normal Equations for a consistent estimation of a full set of EOPs is focused. In this context, meaningful investigations of the obtained accuracies have been carried out. The combined estimates of polar motion, UT1 and their associated rates are therefore discussed and compared with respect to the official reference series and the specific single solutions, respectively.
Michael G. Hart-Davis, Gaia Piccioni, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Florian Seitz
Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, https://doi.org/10.5194/essd-13-3869-2021, 2021
Short summary
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Julius Oelsmann, Marcello Passaro, Denise Dettmering, Christian Schwatke, Laura Sánchez, and Florian Seitz
Ocean Sci., 17, 35–57, https://doi.org/10.5194/os-17-35-2021, https://doi.org/10.5194/os-17-35-2021, 2021
Short summary
Short summary
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we improve the accuracy and precision of VLM estimates, which are based on the difference of altimetry tide gauge observations. Advanced coastal altimetry and an improved coupling procedure of along-track altimetry data and high-frequency tide gauge observations are key factors for a greater comparability of altimetry and tide gauges in the coastal zone and thus for more reliable VLM estimates.
Hendrik Hellmers, Daniela Thaller, Mathis Bloßfeld, Alexander Kehm, and Anastasiia Girdiuk
Adv. Geosci., 50, 49–56, https://doi.org/10.5194/adgeo-50-49-2019, https://doi.org/10.5194/adgeo-50-49-2019, 2019
Short summary
Short summary
The combination of VLBI Intensive and GNSS Rapid products on the base of Normal Equations for a consistent estimation of a full set of EOPs is focused. In this context, meaningful investigations of the obtained accuracies have been carried out. The combined estimates of polar motion, UT1 and their associated rates are therefore discussed and compared with respect to the official reference series and the specific single solutions, respectively.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
Andreas Goss, Michael Schmidt, Eren Erdogan, Barbara Görres, and Florian Seitz
Ann. Geophys., 37, 699–717, https://doi.org/10.5194/angeo-37-699-2019, https://doi.org/10.5194/angeo-37-699-2019, 2019
Short summary
Short summary
This paper describes an approach to model VTEC solely from NRT GNSS observations by generating a multi-scale representation (MSR) based on B-splines. The unknown model parameters are estimated by means of a Kalman filter. A number of products are created which differ both in their spectral and temporal resolution. The validation studies show that the product with the highest resolution, based on NRT input data, is of higher accuracy than others used within the selected investigation time span.
Felix L. Müller, Claudia Wekerle, Denise Dettmering, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
The Cryosphere, 13, 611–626, https://doi.org/10.5194/tc-13-611-2019, https://doi.org/10.5194/tc-13-611-2019, 2019
Short summary
Short summary
Knowledge of the dynamic ocean topography (DOT) enables studying changes of ocean surface currents. The DOT can be derived by satellite altimetry measurements or by models. However, in polar regions, altimetry-derived sea surface heights are affected by sea ice. Model representations are consistent but impacted by the underlying functional backgrounds and forcing models. The present study compares results from both data sources in order to investigate the potential for a combination of the two.
Laura Sánchez, Christof Völksen, Alexandr Sokolov, Herbert Arenz, and Florian Seitz
Earth Syst. Sci. Data, 10, 1503–1526, https://doi.org/10.5194/essd-10-1503-2018, https://doi.org/10.5194/essd-10-1503-2018, 2018
Short summary
Short summary
We provide a surface-kinematics model for the Alpine region based on high-level data analysis of 300 geodetic stations continuously operating over 12.4 years. This model includes a deformation model, a continuous velocity field, and a strain field consistently assessed for the entire Alpine mountain belt. Horizontal and vertical motion patterns are clearly identified and supported by uncertainties better than ±0.2 mm a−1 and ±0.3 mm a−1 in the horizontal and vertical components, respectively.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Eva Boergens, Karina Nielsen, Ole B. Andersen, Denise Dettmering, and Florian Seitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-217, https://doi.org/10.5194/hess-2017-217, 2017
Revised manuscript not accepted
Short summary
Short summary
The water levels of the Mekong River are observed with the SAR altimeter measurements of CryoSat-2. Even small rivers in the river system with a width of 50 m can be observed due to the higher resolution of the SAR measurements. To identify the rivers regardless of a land-water-mask we employ an unsupervised classification on features derived from the SAR measurements. The river water levels are validated and compared to gauge and Envisat data which shows the good performance of the SAR data.
Eren Erdogan, Michael Schmidt, Florian Seitz, and Murat Durmaz
Ann. Geophys., 35, 263–277, https://doi.org/10.5194/angeo-35-263-2017, https://doi.org/10.5194/angeo-35-263-2017, 2017
Short summary
Short summary
Although the number of terrestrial GNSS receivers is rapidly growing, the rather unevenly distributed observations do not allow the generation of high-resolution global ionosphere products. With the regionally enormous increase in GNSS data, the demands on near real-time products are growing very fast. Thus, a procedure for estimating the vertical total electron content based on B-spline representations and Kalman filtering was developed and validated by self-consistency check and altimetry.
C. Schwatke, D. Dettmering, W. Bosch, and F. Seitz
Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, https://doi.org/10.5194/hess-19-4345-2015, 2015
Cited articles
Andritsch, F., Grahsl, A., Dach, R., and Jäggi, A.: Comparing tracking scenarios to LAGEOS and Etalon by simulating realistic SLR observations. Geophysical Research Abstracts, Vol. 19, EGU2017-16642, available at: http://www.bernese.unibe.ch/publist/2017/post/poster_fa.pdf (last access: 30 October 2019), 2017. a
Aoyama, Y., Doi, K., Fukuda, Y., Ikeda, H., Hayakawa, H., Fukuzaki, Y., Sekido, M., Otsubo, T., Nogi, Y., and Shibuya, K.: Geodetic activities at Syowa Station, East Antarctica. Presented at IAG-IASPEI Joint Scientific Assembly, Kobe, Japan, available at: https://confit.atlas.jp/guide/event/iagiaspei2017/subject/G07-4-02/advanced (last access: 19 September 2019), 2017. a
Bizouard, C., Lambert, S., Gattano, C., Becker, O., and Richard, J.-Y.: The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014, J. Geodesy, 93, 621–633, https://doi.org/10.1007/s00190-018-1186-3, 2018. a
Bloßfeld, M.: The key role of Satellite Laser Ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth, PhD thesis, Reihe C der Deutschen Geodätischen Kommission, ISBN 978-3-7696-5157-7, 2014. a
Bloßfeld, M., Seitz, M., and Angermann, D.: Non-linear station motions in epoch and multi-year reference frames, J. Geodesy, 88, 45–63, https://doi.org/10.1007/s00190-013-0668-6, 2014. a
Bloßfeld, M., Rudenko, S., Kehm, A., Panafidina, N., Müller, H., Angermann, D., Hugentobler, U., and Seitz, M.: Consistent estimation of geodetic parameters from SLR satellite constellation measurements, J. Geodesy, 92, 1003–1021, https://doi.org/10.1007/s00190-018-1166-7, 2018. a
Bruni, S., Rebischung, P., Zerbini, S., Altamimi, Z., Errico, M., and Efisio, S.: Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame, J. Geodesy, 92, 383–399, https://doi.org/10.1007/s00190-017-1069-z, 2018. a
Collilieux, X., Altamimi, Z., Ray, J., van Dam, T., and Wu, X.: Effect of the satellite laser ranging network distribution on geocenter motion estimates, J. Geophys. Res., 114, B04402, https://doi.org/10.1029/2008JB005727, 2009. a
Gerstl, M.: Parameterschätzung in DOGS-OC, DGFI Interner Bericht, MG/01/1996/DGFI, 2nd edn., 1997 (in German). a
Gerstl, M., Müller, H., and Ehrensperger, W.: DOGS-CS. Kombination und Lösung großer Gleichungssysteme, DGFI Interner Bericht, MG/01/1995/DGFI, 2008 (in German). a
Glaser, S., König, R., Ampatzidis, D., Nilsson, T., Heinkelmann, R., Flechtner, F., and Schuh, H.: A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS, J. Geodesy, 91, 723–733, https://doi.org/10.1007/s00190-017-1021-2, 2017. a
Glaser, S., König, R., Neumayer, K. H., Nilsson, T., Heinkelmann, R., Flechtner, F., and Schuh, H.: On the impact of local ties on the datum realization of global terrestrial reference frames, J. Geodesy, 93, 655–667, https://doi.org/10.1007/s00190-018-1189-0, 2019a. a
Gross, R., Beutler, G., and Plag, H.-P.: Integrated scientific and societal user requirements and functional specifications for the GGOS, in: Global Geodetic Observing System, edited by: Plag, H.-P. and Pearlman, M. R., Springer,
Berlin Heidelberg New York, 209–224, https://doi.org/10.1007/978-3-642-02687-4_7, 2009. a
Kehm, A., Bloßfeld, M., and Seitz, F.: Optimization of the current SLR tracking network: potential for SLR-derived reference frames, 21st International Workshop on Laser Ranging, Canberra, Australia, Summary in the proceedings to the 21st IWLR, available at: https://cddis.nasa.gov/lw21/docs/2018/papers/Session4_Kehm_paper.pdf (last access: 21 September 2019), 2018. a
Männel, B., Thaller, D., Rothacher, M., Böhm, J., Müller, J., Glaser, S., Dach, R., Biancale, R., Bloßfeld, M., Kehm, A., Herrera Pinzón, I., Hofmann, F., Andritsch, F., Coulot, D., and Pollet, A.: Recent Activities of the GGOS Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO), in: International Symposium on Advancing Geodesy in a Changing World, edited by: Freymueller, J. T. and Sánchez, L., International Association of Geodesy Symposia, 149, 161–164, Springer, Cham, https://doi.org/10.1007/1345_2018_30, 2018. a
Noll, C. E., Ricklefs, R., Horvath, J., Mueller, H., Schwatke, C., and Torrence, M.: Information resources supporting scientific research for the international laser ranging service, J. Geodesy, online first, https://doi.org/10.1007/s00190-018-1207-2, 2018. a
Pavlis, E. C. and Kuzmicz-Cieslak, M.: SLR and the Next Generation Global Geodetic Networks, in: Proceedings of the 16th International Laser Workshop, 183–189, edited by: Schillack, S., Space Research Center, Polish Academy of Sciences, Warszawa, Poland, available at: https://cddis.nasa.gov/lw16 (last access: 19 September 2019), 2009. a
Pavlis, E. C., Kuzmicz-Cieslak, M., and Evans, K.: Expanded SLR Target Constellation for Improved Future ITRFs, 21st International Workshop on Laser Ranging, Canberra, Australia, available at: https://cddis.nasa.gov/lw21/docs/2018/posters/A4_Pavlis_Poster.pdf (last access: 19 September 2019), 2018. a
Pearlman, M. R. and Noll, C.: ILRS Central Bureau Report, ILRS Governing Board Meeting with in the framework of the 21st International Workshop on Laser Ranging, Canberra, Australia, available at: https://cddis.nasa.gov/lw21/docs/2018/presentations/ilrsgb_presentations_20181104.pdf (last access: 19 September 2019), 2018. a
Pearlman, M. R., Degnan, J. J., and Bosworth J. M.: The International Laser Ranging Service, Adv. Space Res., 30, 135–143, https://doi.org/10.1016/S0273-1177(02)00277-6, 2002. a
Sośnica, K., Thaller, D., Dach, R., Jäggi, A., and Beutler, G.: Impact of loading displacements on SLR-derived parameters and the consistendy between GNSS and SLR results, J. Geodesy, 87, 751–769, https://doi.org/10.1007/s00190-013-0644-1, 2013. a
Short summary
Satellite Laser Ranging is one of the four fundamental geodetic space techniques for the accurate determination of geodetic key parameters related to the Earth’s geometry, rotation and gravity field. As the current global SLR station distribution is quite inhomogeneous, a simulation study has been performed in order to determine locations on Earth where additional SLR sites will be most valuable for an improvement of the results, the Antarctic region having been identified as a first priority.
Satellite Laser Ranging is one of the four fundamental geodetic space techniques for the...