Bloemendal, M., Olsthoorn, T., and van de Ven, F.: Combining climatic and
geo-hydrological preconditions as a method to determine world potential for
aquifer thermal energy storage, Sci. Total Environ., 538, 621–633,
https://doi.org/10.1016/j.scitotenv.2015.07.084, 2015.
a
Caljé, R.: Future use of aquifer thermal energy storage inbelow the historic
centre of Amsterdam, MSc thesis, Delft University of Technology, Delft,
http://www.citg.tudelft.nl/fileadmin/Faculteit/CiTG/Over_de_faculteit/Afdelingen/Afdeling_watermanagement/Secties/waterhuishouding/Leerstoelen/Hydrologie/Education/MSc/Past/doc/Calje_2010.pdf
(last access: July 2018), 2010.
a,
b,
c,
d,
e,
f
Doughty, C., Hellstrom, G., and Tsang, C.: A dimensionless approach to the
Thermal behaviour of an Aquifer Thermal Energy Storage System, Water Resour.
Res., 18, 571–587,
https://doi.org/10.1029/WR018i003p00571, 1982.
a,
b,
c,
d,
e
Fetter, C.: Applied Hydrogeology, 4th Edn., Upper Saddle River, NJ, USA, 2001.
a,
b
Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.: MODFLOW-2000,
The U.S. Geological Survey Modular Ground-Water Model-User Guide to Modularization
Concepts and the Ground-Water Flow Process, Report, US Geological Survey, Reston, Virginia, 2000. a
Hecht-Mendez, J., Molina-Giraldo, N., Blum, P., and Bayer, P.: Evaluating MT3DMS
for Heat Transport Simulation of Closed Geothermal Systems, Ground Water, 48,
741–756,
https://doi.org/10.1111/j.1745-6584.2010.00678.x, 2010.
a
Hellström, G., Tsang, C., and Claesson, J.: Buoyancy flow at a two-fluid
interface in a porous medium: analytical studies, Water Resour. Res., 24, 493–506, 1988.
a,
b,
c,
d,
e
Langevin, C. D., Shoemaker, W., and Guo, W.: MODFLOW-2000, the USGS modular
groundwater model – Documentation of the SEAWAT-2000 version with variable
density flow process and integrated MT3DMS transport process, Report, USGS,
Reston, Virginia, 2003.
a,
b
Langevin, C. D., Thorne, D., Dausman, A., Sukop, M., and Guo, W.: SEAWAT Version 4:
A computer program for simulation of multi-Species Solute and heat transport,
Report, USGS, Reston, Virginia, 2008. a
Langevin, C. D., Dausman, A. M., and Sukop, M. C.: Solute and heat transport
model of the Henry and hilleke laboratory experiment, Ground Water, 48, 757–770,
https://doi.org/10.1111/j.1745-6584.2009.00596.x, 2010.
a
Lopik, J., Hartog, N., Zaadnoordijk, W., Cirkel, D., and Raoof, A.: Salinization
in a stratified aquifer induced by heat transfer from well casings, Adv. Water
Resour., 86, 32–45,
https://doi.org/10.1016/j.advwatres.2015.09.025, 2015.
a
Massmann, G., Simmons, C., Love, A., Ward, J., and James-Smith, J.: On variable
density surface water–groundwater interaction: A theoretical analysis of mixed
convection in a stably-stratified fresh surface water – saline groundwater
discharge zone, J. Hydrol., 329, 390–402,
https://doi.org/10.1016/j.jhydrol.2006.02.024, 2006.
a,
b,
c,
d
NVOE: Richtlijnen Ondergrondse Energieopslag, Design guidelines of Dutch branche
association for geothermal energy storage, Report, Dutch association of
geothermal energy storage, Woerden, 2006. a
of Noord-Holland, P.: Database of groundwater abstractions in Noord-holland,
Data, Province of Noord-Holland, Haarlem, 2016. a
Robinson, C., Gibbes, B., and Li, L.: Driving mechanisms for groundwater flow
and salt transport in a subterranean estuary, Geophys. Res. Lett., 33, L03402,
https://doi.org/10.1029/2005gl025247, 2006.
a
Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M.: Thermophysical properties
of seawater: a review of existing correlations and data, Desalinat. Water Treat.,
16, 354–380,
https://doi.org/10.5004/dwt.2010.1079, 2012.
a,
b,
c
Simmons, C., Fenstermaker, T., and Sharp, J.: Variable-density groundwater flow
and solute transport in heterogeneous porous media: approaches, resolutions and
future challenges, J. Contam. Hydrol., 52, 245–275, 2001. a
Sommer, W., Valstar, J., Leusbrock, I., Grotenhuis, T., and Rijnaarts, H.:
Optimization and spatial pattern of large-scale aquifer thermal energy storage,
Appl. Energy, 137, 322–337,
https://doi.org/10.1016/j.apenergy.2014.10.019, 2015.
a,
b
Stuyfzand, P. J.: Hydrochemistry and hydrology of the coastal dune area of the
Western Netherlands, Vrije Universiteit Amsterdam, Amsterdam, 1993. a
Thorne, D., Langevin, C., and Sukop, M.: Addition of simultaneous heat and
solute transport and variable fluid viscosity to SEAWAT, Comput. Geosci., 32,
1758–1768,
https://doi.org/10.1016/j.cageo.2006.04.005, 2006.
a
van Lopik, J. H., Hartog, N., and Zaadnoordijk, W. J.: The use of salinity
contrast for density difference compensation to improve the thermal recovery
efficiency in high-temperature aquifer thermal energy storage systems, Hydrogeol.
J., 24, 1255–1271,
https://doi.org/10.1007/s10040-016-1366-2, 2016.
a,
b,
c,
d
Voss, C.: A finite-element simulation model for saturatedunsaturated,
fluid-density-dependent groundwater flow with energy transport or chemically
reactive single-species solute transport, Report, USGS, Reston, Virginia, 1984. a
Ward, J. D., Simmons, C. T., and Dillon, P. J.: A theoretical analysis of mixed
convection in aquifer storage and recovery: How important are density effects?,
J. Hydrol., 343, 169–186,
https://doi.org/10.1016/j.jhydrol.2007.06.011, 2007.
a,
b
Xynogalou, M.: Determination of optimal separation well distance for Single
Borehole ATES systems in the Netherlands, implementing an axisymmetric numerical
model, Thesis, Delft University of Technology, Delft, 2015.
a,
b,
c
Zheng, C. and Wang, P.: MT3DMS: A Modular Three-Dimensional Multispecies
Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions
of Contaminants in Groundwater Systems; Documentation and User's Guide, US Army
Corps of Engineers, Tuscaloosa, AL, 1999. a