Articles | Volume 45
https://doi.org/10.5194/adgeo-45-377-2018
https://doi.org/10.5194/adgeo-45-377-2018
29 Nov 2018
 | 29 Nov 2018

Accuracy measurement of Random Forests and Linear Regression for mass appraisal models that estimate the prices of residential apartments in Nicosia, Cyprus

Thomas Dimopoulos, Hristos Tyralis, Nikolaos P. Bakas, and Diofantos Hadjimitsis

Related authors

Integration of Earth Observation and Geospatial Datasets for the Development of a National Multi-hazard Risk Assessment in Cyprus
Marios Tzouvaras, Constantinos Panagiotou, Nicholas Kyriakides, Maria Prodromou, Panagiotis Vasiliou, Marina Doukanari, Kyriaki Fotiou, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1485–1491, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025, 2025
Synergistic use of ground-based multi-instrument platforms and satellite recordings to investigate the aerosol-cloud-dynamic interaction in Cyprus
Hossein Panahifar, Maria Poutli, George Kotsias, Argyro Nisantzi, Silas Michaelides, Diofantos Hadjimitsis, Patric Seifert, Albert Ansmann, and Rodanthi-Elisavet Mamouri
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1153–1158, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025, 2025
The contribution of remote sensing for the development of a Green-Holistic IoT Platform for Forest Management and Monitoring: Reforestation and Deforestation Modules
Maria Prodromou, Marios Tzouvaras, Christodoulos Mettas, Andreas Konstantinidis, Andreas Pamboris, Iasonas Iasonos, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1215–1222, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025, 2025
Remote Sensing of Grasslands: Performance Comparison of Radar and Optical Data in Machine Learning Classification
Konstantinos Christofi, Charalambos Chrysostomou, Iason Tsardanidis, Michalis Mavrovouniotis, Giorgia Guerrisi, Charalampos Kontoes, and Diofantos G. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 295–300, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025, 2025
Oil Spill Detection using Convolutional Neural Networks and Sentinel-1 SAR Imagery
Eleftheria Kalogirou, Konstantinos Christofi, Despoina Makri, Muhammad Amjad Iqbal, Valeria La Pegna, Marios Tzouvaras, Christodoulos Mettas, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 757–764, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025, 2025

Cited articles

Antipov, E. A. and Pokryshevskaya, E. B.: Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics, Expert Syst. Appl., 39, 1772–1778, 2012. 
Benjamin, J. D., Guttery, R. S., and Sirmans, C. F.: Mass appraisal: An introduction to multiple regression analysis for real estate valuation, Journal of Real Estate Practice and Education, 7, 65–77, 2004 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Dimopoulos, T. and Moulas, A: A proposal of a mass appraisal system in Greece with CAMA system. Evaluating GWR and MRA techniques. The case study of Thessaloniki Municipality, Open Geosci., 8.1, https://doi.org/10.1515/geo-2016-0064, 2016. 
Liu, X., Deng, Z., and Wang, T.: Real estate appraisal system based on GIS and BP neural network, T. Nonferr. Metal. Soc., 21, s626–s630, 2011. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The paper examines a machine learning algorithm (Random Forests) in comparison with Multivariate Linear Regression, for a data-set of 3500 transactions of residential apartments in Nicosia District in Cyprus. The methodology suggested, indicated high accuracy of the Random Forests Method, that can be applied in automated valuation models and CAMA systems.
Share