A Human Centric Approach on the Analysis of the Smart City Concept: the case study of the Limassol city in Cyprus
Maroula N. Alverti
CORRESPONDING AUTHOR
Department of Civil Engineering and Geomatics, Cyprus University of
Technology, Limassol, 3036, Cyprus
Kyriakos Themistocleous
Department of Civil Engineering and Geomatics, Cyprus University of
Technology, Limassol, 3036, Cyprus
Phaedon C. Kyriakidis
Department of Civil Engineering and Geomatics, Cyprus University of
Technology, Limassol, 3036, Cyprus
Diofantos G. Hadjimitsis
Department of Civil Engineering and Geomatics, Cyprus University of
Technology, Limassol, 3036, Cyprus
Related authors
No articles found.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
K. Themistocleous and M. Prodromou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 505–510, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-505-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-505-2023, 2023
G. Giannarakis, I. Tsoumas, S. Neophytides, C. Papoutsa, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1379–1384, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, 2023
M. Tzouvaras, S. Alatza, M. Prodromou, C. Theocharidis, K. Fotiou, A. Argyriou, C. Loupasakis, A. Apostolakis, Z. Pittaki, M. Kaskara, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1581–1587, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, 2023
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
A. Agapiou, Y. Aktas, L. Barazzetti, A. Costa, B. Cuca, D. D’Ayala, N. Kyriakides, P. Kyriakidis, V. Lysandrou, D. Oreni, M. Previtali, D. Skarlatos, A. Tavares, and M. Vlachos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 27–32, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, 2023
M. Prodromou, D. Cerra, K. Themistocleous, G. Schreier, T. Krauss, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 263–269, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, 2023
Phaedon Kyriakidis, Dimitris Kavroudakis, Philip Fayad, Stylianos Hadjipetrou, Georgios Leventis, and Apostolos Papakonstantinou
AGILE GIScience Ser., 2, 44, https://doi.org/10.5194/agile-giss-2-44-2021, https://doi.org/10.5194/agile-giss-2-44-2021, 2021
Panagiotis Partsinevelos, Phaedon Kyriakidis, and Marinos Kavouras
AGILE GIScience Ser., 1, 1, https://doi.org/10.5194/agile-giss-1-1-2020, https://doi.org/10.5194/agile-giss-1-1-2020, 2020
Evagoras Evagorou, Christodoulos Mettas, Athos Agapiou, Kyriacos Themistocleous, and Diofantos Hadjimitsis
Adv. Geosci., 45, 397–407, https://doi.org/10.5194/adgeo-45-397-2019, https://doi.org/10.5194/adgeo-45-397-2019, 2019
Short summary
Short summary
Freely and open distributed optical satellite images used to obtain bathymetric data for shallow waters based on timeseries analysis of multispectral Sentinel-2 datasets. The ratio transform algorithm was implemented for twelve monthly images covering a year. Bathymetric maps were generated and compared with LIDAR measurements. The results showed that bathymetry can be obtained from satellite data within a Root Mean Square Error while more accurate results were generated during the summer.
Thomas Dimopoulos, Hristos Tyralis, Nikolaos P. Bakas, and Diofantos Hadjimitsis
Adv. Geosci., 45, 377–382, https://doi.org/10.5194/adgeo-45-377-2018, https://doi.org/10.5194/adgeo-45-377-2018, 2018
Short summary
Short summary
The paper examines a machine learning algorithm (Random Forests) in comparison with Multivariate Linear Regression, for a data-set of 3500 transactions of residential apartments in Nicosia District in Cyprus. The methodology suggested, indicated high accuracy of the Random Forests Method, that can be applied in automated valuation models and CAMA systems.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Argyro Nisantzi, Stavros Solomos, George Kallos, and Diofantos G. Hadjimitsis
Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, https://doi.org/10.5194/acp-16-13711-2016, 2016
K. Themistocleous, A. Agapiou, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W2, 45–49, https://doi.org/10.5194/isprs-archives-XLII-2-W2-45-2016, https://doi.org/10.5194/isprs-archives-XLII-2-W2-45-2016, 2016
D. D. Alexakis, M. G. Grillakis, A. G. Koutroulis, A. Agapiou, K. Themistocleous, I. K. Tsanis, S. Michaelides, S. Pashiardis, C. Demetriou, K. Aristeidou, A. Retalis, F. Tymvios, and D. G. Hadjimitsis
Nat. Hazards Earth Syst. Sci., 14, 413–426, https://doi.org/10.5194/nhess-14-413-2014, https://doi.org/10.5194/nhess-14-413-2014, 2014
Cited articles
Angelidou, M.: A conjuncture of four forces, Cities,
47, 95–106, https://doi.org/10.1016/j.cities.2015.05.004, 2015.
Bakici, T., Almirall, E., and Wareham, J.: A smart city initiative: The case
of Barcelona, J. Knowl. Econ., 4, 135–148, https://doi.org/10.1007/s13132-012-0084-9, 2013.
Ben Letaifa, S.: How to strategize smart cities: Revealing the SMART model,
J. Business Res., 68, 1414–1419, https://doi.org/10.1016/j.jbusres.2015.01.024, 2015.
Berry, C. R. and Glaeser, E. L.: The divergence of human capital levels
across cities, Pap. Reg. Sci., 84, 407–444,
https://doi.org/10.1111/j.1435-5957.2005.00047.x, 2005.
Borsekova, K., Korony, S., Vanova, A., and Vitalisova, K.: Functionality
between the size and indicators of smart cities: A research challenge with
policy implications, Cities, 78, 17–26, https://doi.org/10.1016/j.cities.2018.03.010, 2018.
Canton, J.: The extreme future of megacities, Significance, 2011, 53–56,
https://doi.org/10.1111/j.1740-9713.2011.00485.x, 2011.
Caragliu, A. and Del Bo, C.: Smartness and European urban performance:
assessing the local impacts of smart urban attributes, Inn. Eur. J. Soc. Sci.
Res., 25, 97–113, https://doi.org/10.1080/13511610.2012.660323, 2012.
Caragliu, A., Del Bo, C., and Nijkamp, P.: Smart cities in Europe, J. Urban
Technol., 18, 65–72, https://doi.org/10.1080/10630732.2011.601117, 2011.
Carli, R., Dotolia, M., Pellegrinob, R., and Ranieric, L.: Measuring and
Managing the Smartness of Cities: A Framework for Classifying Performance
Indicators, IEEE International Conference on Systems, Man, and Cybernetics,
13–16 October 2013, Manchaster UK, 1288–1293, 2013.
Castelnovo, W., Misuraca, G., and Savoldelli, A.: Smart cities governance:
The need for a holistic approach to assessing urban participatory policy
making, Soc. Sci. Comp. Rev., 34, 724–739,
https://doi.org/10.1177/0894439315611103, 2015.
Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon,
K., and Scholl, H. J.: Understanding smart cities: An integrative framework,
45th Hawaii International Conference on System Sciences, 4–7
January 2012, Maui, Hawaii, 2289–2297,
https://doi.org/10.1109/HICSS.2012.615, 2012.
Constantinides, G.: Sub-regional study: Malta and Cyprus, paper prepared for
the Mediterranean Meeting on Urban Management and Sustainable Development,
Mediterranean Commission on Sustainable Development, available at:
http://www.planbleu.org/pdf/villes_mlt-cyp.pdf (available at: 24 April
2018), 2001.
Cyprus Statistical Service – CYSTAT, Population censuses 2001,
available at: http://www.cystat.gov.cy/mof/cystat/statistics.nsf/populationcondition_22main_en/populationcondition_22main_en?OpenForm&sub=2&sel=2
(last access: 22 May 2018), 2011.
Dameri, R. P.: Searching for Smart City definition: A comprehensive proposal,
Int. J. Comp. Technol., 11, 2544–2551, 2013.
Esmaeilpoorarabi, N., Yigitcanlar, T., and Guaralda, M.: Towards an urban
quality framework: Determining critical measures for different geographical
scales to attract and retain talent in cities, Int. J. Knowl. Dev., 7,
290–312, https://doi.org/10.1504/IJKBD.2016.078556, 2016.
Giffinger, R., Fertner, C., Kramar, Kalasek, R., Pichler-Milanović, N.,
and Meijers, E.: Ranking of European medium-sized cities, Vienna University
of Technology: Centre of Regional Science, available at:
http://www.smartcity-ranking.eu/download/city_ranking_final.pdf
(last access: 22 May 2018), 2007.
Hollands, R. G.: Will the real Smart City please stand up? Intelligent,
progressive or entrepreneurial? City, 12, 303–320, https://doi.org/10.1080/13604810802479126, 2008.
Hortz, T.: The Smart State test: a critical review of the Smart State
Strategy 2005–2015's Knowledge-Based Urban Development, Int. J. Knowl. Dev.,
7, 75–101, https://doi.org/10.1504/IJKBD.2016.075434, 2016.
Jong, M., Joss, S., Schraven, D., Zhan, C., and Weijnen, M.: Sustainable
smart resilient low carbon eco-knowledge cities; making sense of a multitude
of concepts promoting sustainable urbanization, J. Clean. Prod., 109, 25–38,
https://doi.org/10.1016/j.jclepro.2015.02.004, 2015.
Kourtit, K., Nijkamp, P., and Arribas, D.: Smart cities in perspective – a
comparative European study by means of self-organizing maps, Eur. J. Soc.
Sci. Res., 25, 229–246, https://doi.org/10.1080/13511610.2012.660330, 2012.
Kourtit, K., Macharis, C., and Nijkamp, P.: A multi-actor multi-criteria
analysis of the performance of global cities, Appl. Geogr., 49, 24–36,
https://doi.org/10.1016/j.apgeog.2013.09.006, 2014.
Lara, A. P., Moreira Da Costa, E., Furlani, T. Z., and Yigitcanlar, T.:
Smartness that matters: towards a comprehensive and human-centred
characterization of smart cities, J. Open Innov., 2, 1–13,
https://doi.org/10.1186/s40852-016-0034-z, 2016.
Lazaroiu, G. C. and Roscia, M.: Definition methodology for the smart cities
model, Energy, 47, 326–332, https://doi.org/10.1016/j.energy.2012.09.028, 2012.
Leydesdorff, L. and Deakin, M.: The triple helix model and the
meta-stabilization of urban technologies in smart cities, Phys. Soc.,
available at: http://arxiv.org/abs/1003.3344 (last access: 2 May 2018), 2010.
Lombardi, P., Giordano, S., Caragliu, A., Del Bo, C., Deakin, M., Nijkamp,
P., and Farouh, H.: An advanced triple-helix network model for smart cities
performance, Green Ecol. Technol. Urban Plan., 45, 59–73,
https://doi.org/10.4018/978-1-61350-453-6.ch004, 2011.
Lövehagen, N. and Bondesson, A.: Evaluating sustainability of using ICT
solutions in smart cities – methodology requirements, Paper presented at 1st
International Conference on Information and Communication Technologies for
Sustainability, August 2008, Zurich, 2013.
Nam, T. and Pardo, T. A.: Smart City as urban innovation: Focusing on
management, policy, and context, available at:
https://www.ctg.albany.edu/publications/journals/icegov_2011_smartcity/icegov_2011_smartcity.pdf
(last access: 24 April 2018), 2011.
Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., and Scorrano, F.:
Current trends in Smart City initiatives: Some stylised facts, Cities, 38,
25–36, https://doi.org/10.1016/j.cities.2013.12.010, 2014.
Nicolaou, A., Parmaxi, A., Papadima-Sophocleous, S., and Boglou, D.: Language
education in a multilingual city: The case of Limassol, London Rev.
Educ., 14, 174–185, https://doi.org/10.18546/LRE.14.2.12, 2016.
Shapiro, J. M.: Smart cities: Quality of life, productivity, and the growth
effects of human capital, Rev. Econ. Stat., 88, 324–335, https://doi.org/10.1162/rest.88.2.324, 2006.
Stratigea, A., Kyriakides. E., and Nicolaides, C. (Eds.): Smart Cities in the
Mediterranean. Coping with Sustainability Objectives in Small and
Medium-sized Cities and Island Communities, 3–29, https://doi.org/10.1007/978-3-319-54558-5, Springer, 2017.
Toppeta, D.: The Smart City Vision: How Innovation and ICT Can Build Smart,
“Livable, Sustainable Cities, The Innovation Knowledge Foundation, available
at: http://www.thinkinnovation.org/file/research/23/en/Top
peta_Report_005_2010.pdf (last access: 2 May 2018), 2010.
Trindade, E. P., Hinnig, M. P. F., Moreira da Costa, E., Marques, J. S., Cid
Bastos, R., and Yigitcanlar, T.: Sustainable development of smart cities: a
systematic review of the literature, J. Open Innov.: Technol.,
Market Complex., 3, 1–14, https://doi.org/10.1186/s40852-017-0063-2, 2017.
Vyas, S. and Kumaranayake, L.: Constructing socio-economic status indices:
how to use principal components analysis, Health Pol. Plan., 21,
459–468, https://doi.org/10.1093/heapol/czl029, 2006.
Washburn, D. and Sindhu, U.: Helping CIOs understand smart city initiatives,
Forrester Research Inc. Internet site of Fast Co Exist, Cohen, B.: What
Exactly is a Smart City?, available at:
http://www.fastcoexist.com/1680538/what-exactly-is-a-smart-city
(last access: 2 May 2018), 2010.
Winters, J. V.: Why are smart cities growing? Who moves and who stays, J.
Reg. Sci., 51, 253–270, https://doi.org/10.1111/j.1467-9787.2010.00693.x, 2011.
Short summary
The scientific objective is to find a simple understandable model linking human smart characteristics to a group of socio-demographic and urban environment indices, applied to the case of Limassol Urban Complex, Cyprus. The results reveal that the human smart characteristics are significantly correlated with demographic dynamics and built infrastructure characteristics. For instance creativity and open-mindedness appear in most densely urban areas.
The scientific objective is to find a simple understandable model linking human smart...