Beucher, S. and Meyer, F.: The morphological approach to segmentation: the watershed transformation, in: Mathematical Morphology in Image Processing, edited by: Dougherty, E. R., CRC Press, 433–481, ISBN 978-0-8247-8724-0, 1992
Bihani, A., Daigle, H., Santos, J. E., Landry, C., Prodanović, M., and Milliken, K.: MudrockNet: Semantic segmentation of mudrock SEM images through deep learning, Comput. Geosci., 158, 104952, https://doi.org/10.1016/j.cageo.2021.104952, 2022.
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C.: Pore-scale imaging and modelling, Adv. Water Resour., 51, 197–216, https://doi.org/10.1016/j.advwatres.2012.03.003, 2013.
Canny, J.: A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 679–698, https://doi.org/10.1109/TPAMI.1986.4767851, 1986.
Chu, A. K., Benson, S. M., and Wen, G.: Deep-learning-based flow prediction for CO
2 storage in shale–sandstone formations, Energies, 16, 246, https://doi.org/10.3390/en16010246, 2022.
Da Wang, Y., Blunt, M. J., Armstrong, R. T., and Mostaghimi, P.: Deep learning in pore scale imaging and modeling, Earth-Sci. Rev. 215, 103555, https://doi.org/10.1016/j.earscirev.2021.103555, 2021.
Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N., and Kiær, A. F.: 20 years of monitoring CO
2-injection at Sleipner, Energy Procedia, 114, 3916–3926, https://doi.org/10.1016/j.egypro.2017.03.1523, 2017.
Furre, A.-K., Meneguolo, R., Pinturier, L., and Bakke, K.: Planning deep subsurface CO
2 storage monitoring for the Norwegian full-scale CCS project, First Break, 38, 55–60, https://doi.org/10.3997/1365-2397.fb2020074, 2020.
Glover, P. W., Mohammed-Sajed, O. K., Akyüz, C., Lorinczi, P., and Collier, R.: Clustering of facies in tight carbonates using machine learning, Mar. Petrol. Geol., 144, 105828, https://doi.org/10.1016/j.marpetgeo.2022.105828, 2022.
Huang, Z.-K. and Chau, K.-W.: A new image thresholding method based on Gaussian mixture model, Appl. Math. Comput., 205, 899–907, https://doi.org/10.1016/j.amc.2008.05.130, 2008.
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., and Maier-Hein, K. H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation, Nat. Methods, 18, 203–211, https://doi.org/10.1038/s41592-020-01008-z, 2021.
Jain, A. K. and Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters, Pattern Recognit., 24, 1167–1186, https://doi.org/10.1016/0031-3203(91)90143-S, 1991.
Karimpouli, S., Tahmasebi, P., and Saenger, E. H.: Coal cleat/fracture segmentation using convolutional neural networks, Nat. Resour. Res., 29, 1675–1685, https://doi.org/10.1007/s11053-019-09536-y, 2020.
Kim, Y., Ha, S. J., and Sup Yun, T.: Deep learning for extracting micro-fracture: Pixel-level detection by convolutional neural network, E3S Web Conf., 205, 03007, https://doi.org/10.1051/e3sconf/202020503007, 2020.
Otsu, N.: A threshold selection method from gray-level histograms, Automatica, 11, 23–27, 1975.
Otsu, N.: A threshold selection method from gray-level histograms, IEEE Trans. Syst., Man, Cybern., 9, 62–66, https://doi.org/10.1109/TSMC.1979.4310076, 1979.
Panaitescu, C., Wu, K., Kartal, M., Tanino, Y., Starkey, A., Qin, G., Zhao, L., Cao, Z., and Wu, S.: Exploring morth sea fractured sandstone properties: artificial intelligence, multiscale imaging, pore-fracture network analysis and experimental results, in: SPE Europe Energy Conference and Exhibition, Turin, Italy, 10–13 June 2024, paper SPE-220049-MS, https://doi.org/10.2118/220049-MS, 2024.
Pham, C., Zhuang, L., Yeom, S., and Shin, H.-S.: Automatic fracture characterization in CT images of rocks using an ensemble deep learning approach, Int. J. Rock Mech. Min. Sci., 170, 105531, https://doi.org/10.1016/j.ijrmms.2023.105531, 2023.
Rashid, F., Glover, P., Lorinczi, P., Hussein, D., Collier, R., and Lawrence, J.: Permeability prediction in tight carbonate rocks using capillary pressure measurements, Mar. Petrol. Geol., 68, 536–550, https://doi.org/10.1016/j.marpetgeo.2015.10.005, 2015.
Reinhardt, M., Jacob, A., Sadeghnejad, S., Cappuccio, F., Arnold, P., Frank, S., Enzmann, F., and Kersten, M.: Benchmarking conventional and machine learning segmentation techniques for digital rock physics analysis of fractured rocks, Environ. Earth Sci., 81, 71, https://doi.org/10.1007/s12665-021-10133-7, 2022.
Reynolds, C. and Krevor, S.: Characterizing flow behavior for gas injection: Relative permeability of CO
2-brine and N2-water in heterogeneous rocks, Water Resour. Res., 51, 9464–9489, https://doi.org/10.1002/2015WR018046, 2015.
Ringrose, P., Andrews, J., Zweigel, P., Furre, A.-K., Hern, B., and Nazarian, B.: Why CCS is not like reverse gas engineering, First Break, 40, 85–91, https://doi.org/10.3997/1365-2397.fb2022088, 2022.
Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image segmentation, Medical image computing and computer-assisted intervention–MICCAI 2015, edited by: Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., Lecture Notes in Computer Science, 9351, Springer, Cham, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28, 2015.
Rui, Z., Zeng, L., and Dindoruk, B.: Challenges in the large-scale deployment of CCUS, Engineering, 44, 17–20, https://doi.org/10.1016/j.eng.2024.11.031, 2025.
Sabeena, J.: Enhancing Carbon Capture, Utilization, and Storage (CCUS) Through AI-Enabled CNN and Bayesian Networks, in: 2023 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 15–17 November 2023, 1547–1551, https://doi.org/10.1109/ICSCNA58489.2023.10370286, 2023.
Sarkar, P., Kumar, A., Singh, K. H., Ghosh, R., and Singh, T. N.: Pore system, microstructure and porosity characterization of Gondwana shale of Eastern India using laboratory experiment and watershed image segmentation algorithm, Mar. Petrol. Geol., 94, 246–260, https://doi.org/10.1016/j.marpetgeo.2018.04.006, 2018.
Sauvola, J. and Pietikäinen, M.: Adaptive document image binarization, Pattern Recognit., 33, 225–236, https://doi.org/10.1016/S0031-3203(99)00055-2, 2000.
Serra, J.: Image Analysis and Mathematical Morphology, Academic Press, Inc., United States, 610 pp., ISBN 0126372403,1983.
Sezgin, M. and Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation, J. Electron. Imaging, 13, 146–165, https://doi.org/10.1117/1.1631315, 2004.
Soille, P.: On the morphological processing of objects with varying local contrast, in: Discrete Geometry for Computer Imagery (DGCI 2003), Naples, Italy, 19–21 November 2003, 52–61, https://doi.org/10.1007/978-3-540-39966-7_4, 2003.
Trevisan, L., Pini, R., Cihan, A., Birkholzer, J. T., Zhou, Q., González-Nicolás, A., and Illangasekare, T. H.: Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments, Water Resour. Res., 53, 485–502, https://doi.org/10.1002/2016WR019749, 2017.
Wang, Y., Thanh, H. V., Al-Mudhafar, W. J., Dai, Z., Hemeng, Z., Davoodi, S., and Zhang, T.: Data Driven Based Deep Learning for Optimizing Carbon Storage and Methane Adsorption in Unconventional Shale Gas Reservoirs, Journal of Environmental Chemical Engineering, 13, 116901, https://doi.org/10.1016/j.jece.2025.116901, 2025.
Yu, X., Butler, S. K., Kong, L., Mibeck, B. A., Barajas-Olalde, C., Burton-Kelly, M. E., and Azzolina, N. A.: Machine learning-assisted upscaling analysis of reservoir rock core properties based on micro-computed tomography imagery, J. Petrol. Sci. Eng., 219, 111087, https://doi.org/10.1016/j.petrol.2022.111087, 2022.