Geological screening of onshore saline aquifers for CO2 storage: Paraná and Espírito Santo basins, Brazil
Francyne Bochi do Amarante
CORRESPONDING AUTHOR
Instituto de Geociências, Universidade Federal do Rio Grande do Sul – Bento Gonçalves Avenue, 950, 90650-001, Porto Alegre, Brasil
Juliano Kuchle
Instituto de Geociências, Universidade Federal do Rio Grande do Sul – Bento Gonçalves Avenue, 950, 90650-001, Porto Alegre, Brasil
Claiton Marlon dos Santos Scherer
Instituto de Geociências, Universidade Federal do Rio Grande do Sul – Bento Gonçalves Avenue, 950, 90650-001, Porto Alegre, Brasil
Shahin E. Dashtgard
ARISE, Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
Maurício Barcelos Haag
Department of Earth Sciences, University of Toronto – 22 Russell St, Toronto, ON M5S 3B1, Canada
Related authors
Francyne Bochi do Amarante and Mauricio Barcelos Haag
Geosci. Commun., 7, 245–250, https://doi.org/10.5194/gc-7-245-2024, https://doi.org/10.5194/gc-7-245-2024, 2024
Short summary
Short summary
Conferences are key for knowledge exchange and networking. However, these events lack diversity, favoring wealthier countries and limiting opportunities for scholars from lower-income regions. Our study of the EGU meeting reveals that attendance is mostly influenced by a country's income. To promote inclusivity, we suggest rotating event locations, offering affordable accommodations, and establishing travel funds. These steps can help create a more diverse and innovative scientific community.
Francyne Bochi do Amarante and Mauricio Barcelos Haag
Geosci. Commun., 7, 245–250, https://doi.org/10.5194/gc-7-245-2024, https://doi.org/10.5194/gc-7-245-2024, 2024
Short summary
Short summary
Conferences are key for knowledge exchange and networking. However, these events lack diversity, favoring wealthier countries and limiting opportunities for scholars from lower-income regions. Our study of the EGU meeting reveals that attendance is mostly influenced by a country's income. To promote inclusivity, we suggest rotating event locations, offering affordable accommodations, and establishing travel funds. These steps can help create a more diverse and innovative scientific community.
Daniel Galvão Carnier Fragoso, Matheus Kuchenbecker, Antonio Jorge Campos Magalhães, Claiton Marlon Dos Santos Scherer, Guilherme Pederneiras Raja Gabaglia, and André Strasser
Hist. Geo Space. Sci., 13, 39–69, https://doi.org/10.5194/hgss-13-39-2022, https://doi.org/10.5194/hgss-13-39-2022, 2022
Short summary
Short summary
For a long time, human beings have lived with the idea of cycles, as attested by many ancient traditions. This perception led our way of observing and interpreting the most diverse types of phenomena. In the Earth sciences, cyclicity has crucial epistemological value. It offers simple solutions for cause and consequence analysis in time and space. The intention here is to review how such ideas emerged in the geosciences, supporting current stratigraphic principles and practices.
Cited articles
Abraham-A, R. M., San Martín Cañas, S., Miranda, I. F. S., and Tassinari, C. C. G.: Assessment of CO2 storage prospect based on physical properties of Rio Bonito Formation rock units, Energy Geoscience, 5, 100163, https://doi.org/10.1016/j.engeos.2023.100163, 2024.
Althaus, C. E., Scherer, C. M. S., Kuchle, J., Reis, A. D., Ferronatto, J. P. F., De Ros, L. F., and Bardola, T. P.: Wave-dominated lacustrine margin of Aptian pre-salt: Mucuri Member, Espírito Santo Basin, J. S. Am. Earth Sci., 99, 102490, https://doi.org/10.1016/j.jsames.2019.102490, 2020.
Amarante, F. B., Kuchle, J., Iacopini, D., Scherer, C. M. S., Alvarenga, R. S., Ene, P. L., and Schilling, A. B.: Seismic tectono-stratigraphic analysis of the Aptian pre-salt marginal system of Espírito Santo Basin, Brazil, J. S. Am. Earth Sci., 98, 102474, https://doi.org/10.1016/j.jsames.2019.102474, 2020.
Aminu, M. D., Nabavi, S. A., Rochelle, C. A., and Manovic, V.: A review of developments in carbon dioxide storage, Appl. Energ., 208, 1389–1419, 2017.
ANP: Gás Natural e Biocombustíveis, Banco de Dados de Exploração e Produção (BDEP) da Agência Nacional do Petróleo, https://www.gov.br/anp/, last access: 29 June 2024.
Asmus, H. E., Gomes, J. B., and Pereira, A. C. B.: Integração Geológica regional da Bacia do Espírito Santo, in: XXV Congresso Brasileiro de Geologia, São Paulo, Brazil, September 1971, 215–226, 1971.
Bains, P., Baylin-Stern, A., Berghout, N., Budinis, S., Levi, P., Malischek, R., Morgan, T., and Xu, D.: Special Report on Carbon Capture Utilisation and Storage – CCUS in Clean Energy Transitions, International Energy Agency, 120 pp., 2020.
Brazilian National Agency for Petroleum, Natural Gas and Biofuels (ANP): Dataset of the Paraná Basin, Free Access to Public Onshore Technical Data, Brazilian National Agency for Petroleum, Natural Gas and Biofuels [data set], https://reate.cprm.gov.br/arquivos/index.php/s/z0XoautAuswCSbf, last access: 20 March 2024a.
Brazilian National Agency for Petroleum, Natural Gas and Biofuels (ANP): Dataset of the Espírito Santo Basin, Free Access to Public Onshore Technical Data, Brazilian National Agency for Petroleum, Natural Gas and Biofuels [data set], https://reate.cprm.gov.br/arquivos/index.php/s/MSYSOk8HApYAT7w, last access: 20 March 2024b.
Carvalho, A. S. G., Dani, N., De Ros, L. F., and Zambonato, E. E.: The impact of early diagenesis on the reservoir quality of pre-salt (Aptia) sandstones in the Espírito Santo Basin, Eastern Brazil, J. Petrol. Geol., 37, 127–141, 2014.
CCS-Brasil: 1° Relatório Anual de CCS Brasil (1st CCS Brazil annual report), Associação CCS Brasil, 43 pp., 2023.
Chadwick, R. A., Arts, R., Bernstone, C., May, F., Thibeau, S., and Zweigel, P.: Best practice for the storage of CO2 in saline aquifers – observations and guidelines from the SACS and CO2STORE projects, British Geological Survey, Nottingham, UK, 267 pp., ISBN 978-0-85272-610-5, 2008.
Chadwick, R. A., Marchant, B. P., and Williams, G. A.: CO2 storage monitoring: Leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner, Enrgy. Proced., 63, 4224–4239, 2014.
Ciotta, M., Musarra, R. M. L. M., Tassinari, C. S. G., and San Martín Cañas, S.: CO2 Geological Storage in Santos Basin: Potential and Best Suitable Sites. In: Perspectives to CO2 Geological Storage and Greenhouse Gas Negative Emissions in South-Southeastern Brazil: Paraná and Santos Sedimentary Basins, Blucher, São Paulo, 27–40, ISBN 9786555501346, 2022.
Climate Watch: Total carbon emissions by country, https://www.climatewatchdata.org/, last access: 25 March 2024.
Davison, I., Anderson, L., and Nuttall, P.: Salt deposition, loading and gravity drainage in the Campos and Santos salt basins, Geological Society, London, Special Publications, 363, 159–174, 2012.
Empresa de Pesquisa Energética (EPE): Sistema de Informações Geográficas do Setor Energético Brasileiro, https://www.epe.gov.br/, last access: 29 June 2024.
França, R. L., Del Rey, A. C., Tagliari, C. V., Brandão, J. R., and Fontanelli, P. R.: Bacia do Espírito Santo, Bol. Geociencias Petrobras, 15, 501–509, 2007.
Furre, A., Meneguolo, R., Pinturier, L., and Bakke, K.: Planning deep subsurface CO2 storage monitoring for the Norwegian full-scale CCS project, First Break, 38, 55–60, 2020.
Galloway, W. E. and Hobday, D. K.: Terrigenous clastic depositional systems – applications to fossil fuel and groundwater resources, 2nd edn., Springer, 450 pp., ISBN 978-3642646591, 1996.
Gibbins, J. and Chalmers, H.: Carbon capture and storage, Energ. Policy, 36, 4317–4322, 2008.
Goodman, A., Hakala, A., Bromhal, G., Deel, D., Rodosta, T., Frailey, S., Small, M., Allen, D., Romanov, V., Fazio, J., Huerta, N., McIntyre, D., Kutchko, B., and Guthrie, G.: U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale, Int. J. Greenh. Gas Con., 5, 952–965, 2011.
Holloway, S. and Savage, D.: The potential for aquifer disposal of carbon dioxide in the UK, Energ. Convers. Manage., 34, 925–932, 1993.
Holz, M.: The Eo-Permian coal seams of the paraná basin in southernmost Brazil: an analysis of the depositonal conditions using sequence stratigraphy concepts, Coal Geology, 26, 141–163, 1998.
Holz, M.: Sequence stratigraphy of a lagoonal estuarine system – an example from the lower Permian Rio Bonito Formation, Paraná Basin, Brazil, Sediment. Geol., 162, 305–331, 2003.
Holz, M. and Carlucci, R.: Litoestratigrafia, estratigrafia de sequencias e evolução paleofisiográfica da zona de borda da Bacia do Paraná no Rio Grande do Sul durante o Eo-Permiano, in: Geologia do Rio Grande do Sul, edited by: Holz, M. and De Ros, L. F., CIGO UFRGS, 303–322, 2000.
Holz, M., Küchle, J., Philipp, R. P., Bischoff, A. P., and Arima, N.: Hierarchy of tectonic control on stratigraphic signatures: Base-level changes during the Early Permian in the Paraná Basin, southernmost Brazil, J. S. Am. Earth Sci., 22, 85–204, 2006.
IEA Greenhouse Gas R&D Programme (IEA GHG): CCS Site Characterisation Criteria, report number 2009/10, 2009.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., ISBN 978-92-9169-143-2, 2014.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, 35–115, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Jayasekara, D. W., Ranjith, P. G., Wanniarachchi, W. A. M., Rathnaweera, T. D., and Chaudhuri, A.: Effect of salinity on supercritical CO2 permeability of caprock in deep saline aquifers: an experimental study, Energy, 191, 116486, https://doi.org/10.1016/j.energy.2019.116486, 2020.
Karner, G. D. and Gamboa, L. A. P.: Timing and origin of the South Atlantic pre-salt sag basins and their capping evaporates, in: Evaporites Through Space and Time, edited by: Schreiber, B. C., Lugli, S., and Bąbel, M., Geological Society, London, Special Publications, 285, 15–35, 2007.
Karner, G. D., Driscoll, N. W., and Barker, D. H. N.: Synrift subsidence across the West African continental margin: The role of lower plate ductile extension, in: Petroleum Geology of Africa: New Themes and Developing Technologies, edited by: Arthur, T. J., Macgregor, D. S., and Cameron, N. R., Geological Society, London, Special Publications, 207, 105–125, 2003.
Ketzer, J. M., Holz, M., Morad, S., and Al-Aasm, I. S.: Sequence stratigraphic distribution of diagenetic alterations in coal-bearing, paralic sandstones: evidence from the Rio Bonito Formation (early Permian), southern Brazil, Sedimentology, 50, 855–877, 2003.
Ketzer, J. M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., and de Lima, V.: Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito Formation (Permian), Southern Brazil, Appl. Geochem., 24, 760–767, 2009.
Kolenovic, I. and Saftic, B.: Geološko skladištenje ugljičnog dioksida, Rudarsko-geološko-naftni zbornik, 28, 9–22, 2014.
Kuchle, J. and Holz, M.: Aplicação da estratigrafia de sequencias para caracterização em multiescala de reservatórios no Grupo Guatá (Eopermiano da Bacia do Paraná) na região de São Gabriel – RS, Brasil, Pesquisas em Geociências, 28, 3–20, 2002.
Lavina, E. L. and Lopes, R. C.: A transgressao marinha do Permiano Inferior e a evoluçao paleogeografica do Super-Grupo Tubarao no Estado do Rio Grande do Sul, Paula Coutiana, 1, 51–103, 1987.
Lima, V. D., Einloft, S., Ketzer, J. M., Jullien, M., Bildstein, O., and Petronin, J. C.: CO2 Geological storage in saline aquifers: Paraná Basin caprock and reservoir chemical reactivity, Enrgy. Proced., 4, 5377–5384, 2011.
Maahs, R., Kuchle, J., Scherer, C. M. S., and Alvarenga, R. S.: Sequence stratigraphy of fluvial to shallow-marine deposits: the case of the early Permian Rio Bonito Formation, Paraná Basin, southernmost Brazil, Braz. J. Geol., 49, e20190059, https://doi.org/10.1590/2317-4889201920190059, 2019.
Maahs, R., Kuchle, J., Rodrigues, A. G., da Silva, T. F., González, M. B., and Erthal, F.: Paleoenvironmental reconstruction of the Permian coal beds in the Paraná Basin (Brazil): evidence from organic geochemical and sedimentological analyses, J. S. Am. Earth Sci., 128, 104484, https://doi.org/10.1016/j.jsames.2023.104484, 2023.
Maahs, R., Kuchle, J., Rodrigues, A. G., Trombetta, M. C., Alvarenga, R. S., Barili, R., and Freitas, W.: Three-dimensional geological modeling applied to multiscale heterogeneity of a reservoir analog: Paleocoastal deposits from the Rio Bonito Formation, Paraná Basin, Mar. Petrol. Geol., 167, 106930, https://doi.org/10.1016/j.marpetgeo.2024.106930, 2024.
Machado, C. X., Rockett, G. C., and Ketzer, J. M. M.: Brazilian Renewable Carbon Capture and Geological Storage Map: Possibilities for the Paraná Basin, Enrgy. Proced., 37, 6105–6111, 2013.
Machado, J. L. F. and Freitas, M. A. D.: Projeto mapa hidrogeológico do Estado do Rio Grande do Sul – Relatório final, 1. CPRM, 65 pp., 2005.
MapBiomas Brasil: Infrastructure Data, MapBiomas Brasil [data set], https://brasil.mapbiomas.org/en/dados-de-infraestrutura/, last access: 20 March 2024.
Maskell, A., Scoth, P. M., Buimaman, I., and Bickle, M.: A siltstone reaction related to CO2 and sulfur-bearing fluids: integrating quantitative elemental mapping with reactive transport modelling, Am. Mineral., 103, 314–323, 2018.
Milani, E. J.: Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gondwana sul-ocidental. 2 v. Tese (Doutorado) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 1997.
Milani, E. J. and Zalán, P. V.: The Geology of Paleozoic Cratonic Basins and Mesozoic Interior Rifts of Brazil, AAPG Int. Conf. & Exhibition, 8–11 November 1998, Rio de Janeiro, Brazil, Search and Discovery Article no. 90933, 1998.
Milani, E. J., Faccini, U. F., Scherer, C. M., Araújo, L. M., and Cupertino, J. A.: Sequences and stratigraphic hierarchy of the Paraná Basin (Ordovician to Cretaceous), Southern Brazil, Boletim Instituto de Geociências Universidade de São Paulo, Série Científica, 29, 125–173, 1998.
Milani, E. J., Melo J. H. G., Souza, P. A., Fernandes, L. A., and França, A. B.: Bacia do Paraná, Bol. Geociencias Petrobras, 15, 265–287, 2007.
Mohriak, W. U.: Bacias Sedimentares Da Margem Continental Brasileira, in: Geologia, Tectônica e Recursos Minerais do Brasil, edited by: Bizzi, L. A., Schobbenhaus, C., Vidotti, R. M. & Gonçalves, J. H., Companhia de Pesquisas de Recursos Minerais, Brasília, 87–165, ISBN 85-230-0790-3, 2003.
Moreira, J. R., Romeiro, V., Fuss, S., Kraxner, F., and Pacca, S. A.: BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues, Appl. Energ., 179, 55–63, 2016.
Neves, I. d. A., Lupinacci, W. M., and Silva, C. G.: A new geological model based on a seismic-stratigraphic analysis of the eastern Inhambú Oil Field, onshore Espírito Santo Basin, Brazil, Braz. J. Geophys., 36, 1–16, 2018.
Oelkers, E. H., Gíslason, S. R., and Matter, J.: Mineral Carbonation of CO2, Elements, 4, 333–337, 2008.
Oliveira, S. B., Weber, N., Yeates, C., and Tassinari, C. C. G.: Geological screening for onshore CO2 storage in the Rio Bonito formation, Paraná Basin, Brazil, J. Maps, 19, 2171817, https://doi.org/10.1080/17445647.2023.2171817, 2023.
Orita, G. K. L. and Da Cruz, V. G. P.: Captura e armazenamento de CO2: Uma revisão das tecnologias existentes, carbonatação in situ de basaltos e avaliação do potencial da Formação Serra Geral como reservatório de CO2, Geociências, 41, 779–795, https://doi.org/10.5016/geociencias.v41i03.16760, 2022.
Pantopoulos, G., Orita, G. K. L., Armelenti, G., Althaus, C. E., Kuchle, J., Scherer, C. M. S., Rodrigues, A. G., and De Ros, L. F.: Depositional conditions at the Aptian pre-salt margins: evidence from quantitative petrography and textural analysis of the Mucuri Member, Espírito Santo Basin, Brazil, Petrol. Geosci., 27, petgeo2020-112, https://doi.org/10.1144/petgeo2020-112, 2021.
Paulipetro: Geologia da Bacia do Paraná – Reavaliação da potencialidade e prospectividade em Hidrocarbonetos, Consórcio CESP/IPT, São Paulo, Brasil, 198 pp., OCLC 14944178, 1982.
Prevedel, B., Wohlgemuth, L., Henninges, J., Krüger, K., Norden, B., Förster, A., and the CO2SINK Drilling Group: The CO2SINK Boreholes for Geological Storage Testing, Sci. Dril., 6, 32–37, https://doi.org/10.2204/iodp.sd.6.04.2008, 2008.
Rackley, S. A.: Carbon Capture and Storage; 2nd edn., Butterworth-Heinemann, Cambridge, MA, USA, ISBN 978-0-12-812041-5, 2017.
Raza, A., Gholami, R., Rezaee, R., Bing, C. H., Nagarajan, R., and Hamid, M. A.: CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation, Petroleum, 4, 95–107, 2018.
Rockett, G. C., Machado, C. X., Ketzer, J. M. M., and Centeno, C. I.: The CARBMAP project: Matching CO2 sources and geological sinks in Brazil using geographic information system, Enrgy. Proced., 4, 2764–2771, 2011.
Scherer, C. M. S., Reis, A. D., Horn, B. L. D., Bertolini, G., Lavina, E. L. C., Kifumbi, C., and Goso Aguilar, C.: The stratigraphic puzzle of the permo-mesozoic southwestern Gondwana: The Paraná Basin record in geotectonic and palaeoclimatic context, Earth-Sci. Rev., 240, 104397, https://doi.org/10.1016/j.earscirev.2023.104397, 2023.
Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG): Map of CO2 emissions by Brazilian state, https://seeg.eco.br/en/home/#emissoes, last access: 5 November 2024.
Szatmari, P.: Habitat of petroleum along the South Atlantic margins, in: Petroleum Systems of South Atlantic Margins, Tulsa, edited by: Mello, M. R. and Katz, B. J., AAPG Memoir, 73, 69–75, 2000.
van der Meer, L. G. H. and Yavuz, F.: CO2 storage capacity calculations for the Dutch subsurface, Enrgy. Proced., 1, 2615–2622, 2009.
Vieira, R. A. B.: Análise Estratigráfica e Evolução Paleogeográfica da Seção Neoaptiana na Porção Sul da Plataforma de São Mateus, Bacia do Espírito Santo, Brasil, Dissertation (Master's), Universidade Federal do Rio Grande do Sul, Porto Alegre, 1998.
Vieira, R. A. B., Mendes, M. P., Vieira, P. E., Costa, L. A. R., Tagliari, C. V., Bacelar, L. A. P., and Feijó, F. J.: Bacias do Espírito Santo e Mucuri, Boletim de Geociências da Petrobrás, 8, 191–202, 1994.
Weber, N., de Oliveira, S. B., Cavallari, A., Morbach, I., Tassinari, C. C. G., and Meneghini, J.: Assessing the potential for CO2 storage in saline aquifers in Brazil: Challenges and Opportunities, Greenh. Gases, 14, 319–329, 2024.
White, I. C.: Relatório sobre as Coal Measures e rochas associadas ao sul do Brasil: Relatório final da Comissão dos Estudos das Minas de Carvão de Pedra do Brasil, Rio de Janeiro, Brasil, 1908.
Wildenborg, T., Chadwick, A., Deflandre, J., Eiken, O., Mathieson, A., Metcalfe, R., Schmidt Hattenberger, C., and Wollenweber, J.: Key messages from active CO2 storage sites, Enrg. Proced., 37, 6317–6325, 2013.
Zalan, P. V., Wolff, S., Conceição, J. C. J., Marques, A., Astolfi, M. A. M., Vieira, I. S., Appi, V. T., and Zanotto, O. A.: Bacia do Paraná, in: Origem e Evolução de Bacias Sedimentares, Petrobras, Rio de Janeiro, 135–169, CDD 551.0981.551.8, 1990.
Short summary
To combat global warming and achieve net-zero CO2 emissions by 2050, Carbon Capture and Storage (CCS) is vital. Despite being a top CO2 emitter globally, Brazil is early in its CCS journey. Our study evaluates the potential of using southern Brazil's saline aquifers for CO2 storage with the aim of supporting Brazil’s efforts to reduce emissions and mitigate climate change. We identify optimal storage sites in two basins, Paraná and Espírito Santo, with ideal locations near existing pipelines.
To combat global warming and achieve net-zero CO2 emissions by 2050, Carbon Capture and Storage...