The Horizon Europe AGEMERA Project: Innovative Non-Invasive Geophysical Methodologies for Mineral Exploration
Jari Joutsenvaara
CORRESPONDING AUTHOR
Kerttu Saalasti Institute, University of Oulu, Nivala, Finland
Muon Solutions Oy Ltd, Pyhäsalmi, Finland
Marko Holma
Kerttu Saalasti Institute, University of Oulu, Nivala, Finland
Muon Solutions Oy Ltd, Pyhäsalmi, Finland
Pasi Kuusiniemi
Muon Solutions Oy Ltd, Pyhäsalmi, Finland
Jarmo Korteniemi
Muon Solutions Oy Ltd, Pyhäsalmi, Finland
Helena Seivane
Geosciencies Barcelona GEO3BCN-CSIC, Barcelona, Spain
David Marti-Linares
Instituto Geológico y Minero de España (IGME), CSIC, Madrid, Spain
Martin Schimmel
Geosciencies Barcelona GEO3BCN-CSIC, Barcelona, Spain
Giulio Casini
LITHICA SCCL, Sta Coloma de Farners, Spain
Grant George Buffett
LITHICA SCCL, Sta Coloma de Farners, Spain
Markku Pirttijärvi
Radai Ltd, Oulu, Finland
Ari Saartenoja
Radai Ltd, Oulu, Finland
Barbara Štimac Tumara
OPT/NET B.V., Noord Holland, the Netherlands
Ivan Kapustin
OPT/NET B.V., Noord Holland, the Netherlands
Related authors
No articles found.
Jordi Díaz, Sergi Ventosa, Martin Schimmel, Mario Ruiz, Albert Macau, Anna Gabàs, David Martí, Özgenç Akin, and Jaume Vergés
Solid Earth, 14, 499–514, https://doi.org/10.5194/se-14-499-2023, https://doi.org/10.5194/se-14-499-2023, 2023
Short summary
Short summary
We assess the capability of multiple methods based on the interpretation of seismic noise to map the basement of the Cerdanya Basin, located in the eastern Pyrenees. Basement depth estimations retrieved from the different approaches are consistent, with maximum depths reaching 700 m close to the Têt fault bounding the basin to the east. Our results prove that seismic noise analysis using high-density networks is an excellent tool to improve the geological characterization of sedimentary basins.
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825, https://doi.org/10.5194/se-13-793-2022, https://doi.org/10.5194/se-13-793-2022, 2022
Short summary
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Juvenal Andrés, Puy Ayarza, Martin Schimmel, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 11, 2499–2513, https://doi.org/10.5194/se-11-2499-2020, https://doi.org/10.5194/se-11-2499-2020, 2020
Juvenal Andrés, Deyan Draganov, Martin Schimmel, Puy Ayarza, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 10, 1937–1950, https://doi.org/10.5194/se-10-1937-2019, https://doi.org/10.5194/se-10-1937-2019, 2019
Cited articles
Barnoud, A., Cayol, V., Niess, V., Cârloganu, C., Lelièvre, P., Labazuy, P., and Le Ménédeu, E.: Bayesian joint muographic and gravimetric inversion applied to volcanoes, Geophys. J. Int., 218, 2179–2194, https://doi.org/10.1093/GJI/GGZ300, 2019.
Beni, T., Borselli, D., Bonechi, L., Bongi, M., Brocchini, D., Ciaranfi, R., Cimmino, L., Ciulli, V., D'Alessandro, R., Dini, A., Frosin, C., Gigli, G., Gonzi, S., Guideri, S., Lombardi, L., Nocentini, M., Saracino, G., and Casagli, N.: Transmission-Based Muography for Ore Bodies Prospecting: A Case Study from a Skarn Complex in Italy, Nat. Resour. Res., 32, 1529–1547, https://doi.org/10.1007/s11053-023-10201-8, 2023.
Berbellini, A., Schimmel, M., Ferreira, A. M. G., and Morelli, A.: Constraining S-wave velocity using Rayleigh wave ellipticity from polarization analysis of seismic noise, Geophys. J. Int., 216, 1817–1830, 2019.
Chamarczuk, M., Malinowski, M., Draganov, D., Koivisto, E., Heinonen, S., and Rötsä, S.: Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland, Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022, 2022.
Cheraghi, S., Craven, J. A., and Bellefleur, G.: Feasibility of virtual source reflection seismology using interferometry for mineral exploration: A test study in the Lalor Lake volcanogenic massive sulphide mining area, Manitoba, Canada, Geophys. Prospect., 63, 833–848, 2015.
Colombero, C., Papadopoulou, M., Kauti, T., Skyttä, P., Koivisto, E., Savolainen, M., and Socco, L. V.: Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland), Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, 2022.
Dentith, M. and Mudge, S. T.: Geophysics for the Mineral Exploration Geoscientist, Cambridge University Press, https://doi.org/10.1017/CBO9781139024358, 2014.
Diaz, J., Schimmel, M., Ruiz, M., and Carbonell, R.: Seismometers Within Cities: A Tool to Connect Earth Sciences and Society, Front. Earth Sci. (Lausanne), 8, https://doi.org/10.3389/feart.2020.00009, 2020.
European Commission: Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations, https://doi.org/10.2760/386650, 2023.
European Commission: Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020Text with EEA relevance, 2024.
Gil, A., Malehmir, A., Buske, S., Alcalde, J., Ayarza, P., Martínez, Y., Lindskog, L., Spicer, B., Carbonell, R., Orlowsky, D., Carriedo, J., and Hagerud, A.: Reflection seismic imaging to unravel subsurface geological structures of the Zinkgruvan mining area, central Sweden, Ore Geol. Rev., 137, 104306, https://doi.org/10.1016/j.oregeorev.2021.104306, 2021.
Hivert, F., Roche, I. L., Decitre, J. B., Brunner, J., Busto, J., and Gaffet, S.: Muography sensitivity to hydrogeological rock density perturbation: Roles of the absorption and scattering on the muon flux measurement reliability, Near Surf. Geophys., 15, 121–129, https://doi.org/10.3997/1873-0604.2016053, 2017.
Holma, M., Korteniemi, J., Casini, G., Saura, E., Šumanovac, F., Kapuralić, J., and Tornos, F.: Agile exploration and geo-modelling for European critical raw materials: introduction to the AGEMERA project, in: Lithosphere 2022 Twelfth Symposium On The Structure, Composition And Evolution Of The Lithosphere, 51–54, 2022.
Holma, M., Peytcheva, I., Šumanovac, F., Tornos, F., Nyambe, I., and Joutsenvaara, J.: Horizon Europe project AGEMERA: Combining novel methodologies for agile exploration and geomodelling of critical raw materials deposits, in: Proceedings of the Geological Society of Finland, vol. 3, Suomen Geologinen Seura, Helsinki, 43, 2023.
Jones, T., Olivier, G., Murphy, B., Cole, L., Went, C., Olsen, S., Smith, N., Gal, M., North, B., and Burrows, D.: Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit, Minerals, 14, 254, 2024.
Krawczyk, C. M., Stiller, M., Bauer, K., Norden, B., Henninges, J., Ivanova, A., and Huenges, E.: 3-D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany, Geoth. Energ., 7, 15, https://doi.org/10.1186/s40517-019-0131-x, 2019.
Lechmann, A., Mair, D., Ariga, A., Ariga, T., Ereditato, A., Nishiyama, R., Pistillo, C., Scampoli, P., Schlunegger, F., and Vladymyrov, M.: Muon tomography in geoscientific research – A guide to best practice, Earth Sci. Rev., 222, https://doi.org/10.1016/j.earscirev.2021.103842, 2021.
Leistel, J. M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., Almodóvar, G. R., Pascual, E., and Saez, R.: The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue: Review and preface to the Thematic Issue, Miner. Depos., 33, 2–30, 1997.
Lowrie, W. and Fichtner, A.: Fundamentals of Geophysics, 3rd edn., Cambridge University Press, https://doi.org/10.1017/9781108685917, 2020.
Malmqvist, L., Jönsson, G., and Kristiansson, K.: In situ density determination by means of underground cosmic-ray intensity measurements a theoretical study, Geoexploration, 16, 318, 1978.
Malmqvist, L., Jonsson, G., Kristiansson, K., and Jacobsson, L.: Theoretical studies in in-situ rock density determinations using underground cosmic-ray muon intensity measurements with application in mining geophysics, Geophysics, 44, 1549–1569, https://doi.org/10.1190/1.1441026, 1979.
Nabighian, M. N. (Ed.): Electromagnetic Methods in AppliedGeophysics, vol. 2, Application, Parts A and B, SEG, Tulsa, https://doi.org/10.1190/1.9781560802686, 1991.
Oláh, L., Tanaka, H. K. M., Hamar, G., and Varga, D.: Investigation of the limits of high-definition muography for observation of Mt Sakurajima, Philos. T. Roy. Soc. A, 377, 2137, https://doi.org/10.1098/rsta.2018.0135, 2019.
Oláh, L., Tanaka, H. K. M., and Varga, D. (Eds.): Muography: Exploring Earth's Subsurface with Elementary Particles, American Geophysical Union and John Wiley & Sons, https://doi.org/10.1002/9781119722748, 2022.
Pirttijärvi, M., Pietilä, R., Hattula, A., and Hjelt, S.-E.: Modelling and inversion of electromagnetic data using an approximate plate model, Geophys. Prospect, 50, 425–440, 2002.
Pirttijärvi, M., Zaher, M. A., and Korja, T.: Combined Inversion of Airborne Electromagnetic and Static Magnetic Field Data, Geophysica, 50, 2014.
Romero, P. and Schimmel, M.: Mapping the basement of the Ebro Basin in Spain with seismic ambient noise autocorrelations, J. Geophys. Res.-Sol. Ea., 123, 5052–5067, 2018.
Schimmel, M., Stutzmann, E., Ardhuin, F., and Gallart, J.: Polarized Earth’s ambient microseismic noise, Geochem. Geophys. Geosyst., 12, https://doi.org/10.1029/2011GC003661, 2011.
Sheriff, R. E. and Geldart, L. P.: Exploration Seismology, Cambridge University Press, https://doi.org/10.1017/CBO9781139168359, 1995.
Snieder, R. and Wapenaar, K.: Imaging with ambient noise, Phys. Today, 63, 44–49, 2010.
Stutzmann, E., Schimmel, M., Patau, G., and Maggi, A.: Global climate imprint on seismic noise, Geochem. Geophys. Geosyst., 10, https://doi.org/10.1029/2009GC002619, 2009.
Xiao, L., Patzer, C., and Kamm, J.: 3D inversion of drone electromagnetic data–the DroneSOM project, in: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG), 11–20 July 2023, Berlin, 2023.
Zhdanov, M. S.: Electromagnetic geophysics: Notes from the past and the road ahead, Geophysics, 75, 75A49–75A66, 2010.
Short summary
The AGEMERA project (Agile Exploration and Geo-Modelling for European Critical Raw Materials) enhances EU critical raw materials exploration by integrating non-invasive methods such as ambient noise passive seismic, drone-based surveys, and muography. These technologies map bedrock properties and resource distribution effectively, feeding data into a comprehensive web-based repository for strategic analysis.
The AGEMERA project (Agile Exploration and Geo-Modelling for European Critical Raw Materials)...