Articles | Volume 64
https://doi.org/10.5194/adgeo-64-23-2024
https://doi.org/10.5194/adgeo-64-23-2024
22 Aug 2024
 | 22 Aug 2024

An Efficient Surrogate-based Multi-objective Optimisation Framework with Novel Sampling Strategy for Sustainable Island Groundwater Management

Weijiang Yu, Domenico Baù, Alex S. Mayer, and Mohammadali Geranmehr

Related authors

Estimate of a spatially variable reservoir compressibility by assimilation of ground surface displacement data
C. Zoccarato, D. Baù, F. Bottazzi, M. Ferronato, G. Gambolati, S. Mantica, and P. Teatini
Proc. IAHS, 372, 351–356, https://doi.org/10.5194/piahs-372-351-2015,https://doi.org/10.5194/piahs-372-351-2015, 2015

Cited articles

Coulon, C., Lemieux, J. M., Pryet, A., Bayer, P., Young, N. L., and Molson, J.: Pumping optimization under uncertainty in an island freshwater lens using a sharp-interface seawater intrusion model, Water Resour. Res., 58, e2021WR031793, https://doi.org/10.1029/2021WR031, 2022. 
Gulley, J. D., Mayer, A. S., Martin, J. B., and Bedekar, V.: Sea level rise and inundation of island interiors: Assessing impacts of lake formation and evaporation on water resources in arid climates, Geophys. Res. Lett., 43, 9712–9719, https://doi.org/10.1002/2016GL070667, 2016. 
Kourakos, G. and Mantoglou, A.: An efficient simulation-optimization coupling for management of coastal aquifers, Hydrogeol. J., 23, 1167–1179, https://doi.org/10.1007/s10040-015-1293-7, 2015. 
Langevin, C. D., Thorne Jr., D. T., Dausman, A. M., Sukop, M. C., and Guo, W.: SEAWAT Version 4: A computer program for simulation of multi-species solute and heat transport, in: U.S. Geological Survey Techniques and Methods Book 6 (p. 39), Chapter A22, https://doi.org/10.3133/tm6A22, 2008.  
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html (last access: 19 August 2024), 2011. 
Download
Short summary
This study proposes an offline machine-learning (ML) algorithm that ranks candidate training points by scoring them based on their distance to the closest training point and on the local gradient of the surrogate estimate and then choosing the highest-rank point. The effectiveness of this method is confirmed in developing surrogates to solve a two-objective groundwater pumping optimization problem formulated on a three-dimensional island aquifer.