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Abstract. In groundwater pumping optimization (GPO),
offline-trained data-driven surrogates can be used to replace
numerical-intensive simulators in order to save computing
time. The traditional offline training approach involves build-
ing surrogates prior to optimization, fitting training datasets
that cover the input space uniformly or randomly, which can
prove inefficient due to the potential oversampling of low-
gradient areas and under-sampling of high-gradient areas.
This study proposes an offline machine-learning (ML) algo-
rithm that ranks candidate training points by scoring them
based on their distance to the closest training point and on
the local gradient of the surrogate estimate and then choos-
ing the highest-rank point. This method is applied to develop
surrogates for solving a two-objective GPO problem formu-
lated on a three-dimensional (3D) island aquifer, using hy-
drogeological conditions representative of San Salvador Is-
land, Bahamas. The objectives are to minimise the supply
cost (fOC) resulting from groundwater pumping and desali-
nation and maximise fresh groundwater supply (Qp), sub-
ject to constraints on seawater intrusion (SWI) control ex-
pressed in terms of aquifer drawdown 1s at pumping loca-
tions and aquifer salt mass increase 1SM. Gaussian Process
(GP) is the technique applied to construct surrogates of ob-
jectives and constraints, alongside the estimation of uncer-
tainties. Using GP models, it is possible to estimate the prob-
ability of “Pareto optimality” for each pumping scheme by
Monte Carlo simulation. Pareto optimal pumping schemes
(POPS) are then characterized by a probability of occurrence,
which can be verified by numerical simulation. The GP train-
ing strategy’s effectiveness in generating POPS is compared

to traditional training approaches, showing that such a strat-
egy can efficiently identify reliable POPS.

1 Introduction

Limited by recharge rates and land area, freshwater in is-
land aquifers is typically in the shape of a lens, with a thick-
ness between a few meters to a few tens of meters, which
makes it particularly vulnerable to SWI (Kourakos and Man-
toglou, 2015; Gulley et al., 2016; Coulon et al., 2022). Island
aquifers are often the main freshwater source for local com-
munities, making groundwater pumping inevitable. Yu et al.
(2023) have shown that while pumping from the island cen-
ter at shallow depths is cost-effective for meeting demand, it
increases the risk of seawater intrusion (SWI), highlighting a
conflict between supply costs and SWI control.

GPO is usually adopted to investigate the trade off be-
tween sustainability and/or SWI control against cost. GPO
is formulated by optimizing management objectives sub-
ject to constraints, both of which are typically functions
of decision variables (DVs) and state variables (SVs). Ap-
plying the simulation-optimization (SO) method to derive
POPS may incur huge computational costs due to repeated
calls to numerically-intensive simulators. To reduce this cost,
fast data-driven surrogates can be employed instead, form-
ing a surrogate-based SO framework. Traditionally, these
surrogates are built by “offline” training, that is, prior to
the optimization, by fitting training datasets that cover the
DV space either uniformly or randomly. Traditional training
methods may result in inefficiency due to oversampling low-
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Figure 1. (a) The conceptualization of the island aquifer domain.
(b) Offline MOOA framework based on the proposed strategy.

gradient and under-sampling high-gradient areas of the DV
space. We introduce an offline ML algorithm for selecting
training points, applied in an island aquifer multi-objective
GPO. This efficient sampling strategy helps develop surro-
gate models to quickly identify reliable POPS and promote a
sustainable coastal hydrogeological environment.

2 Methods

2.1 Study area

An illustrative rectangular aquifer, loosely representing the
lens-shaped freshwater system of San Salvador Island (Ba-
hamas) (Gulley et al., 2016), is chosen as a test site. This
aquifer, depicted in Fig. 1a, is discretized into a 3D finite-
difference grid of 60 000 cells. The four lateral sides are at a
constant salt concentration of 35 g L−1 and a constant head
of 0 m, representing seaward boundary conditions. Hydroge-
ological details specific to the study area can be found in Yu
et al. (2023). It is important to note that this model, though
computationally substantial, does not fully account for real-
world site conditions, such as the presence of surface water
bodies. This simplification approach aims to provide qualita-
tive insights applicable to similar island aquifer settings.

2.2 SWI modelling and surrogate-based GPO

Pumping is operated by five wells, one at the island centre,
and the other four positioned symmetrically relative to the
“central” well, located at (0,0). The central well is defined
by two DVs, the pumping depth D1 and the pumping rate
Q1. The pumping depth D2, the pumping rate Q2, and the
coordinates (±X2,±Y2), are the DVs for the other four wells
(Fig. 1a).

SEAWAT (Langevin et al., 2008) is used to model aquifer
response under different pump schemes and construct train-
ing data. GP with a square exponential covariance (ker-
nel) function is used to build surrogates (Rasmussen and
Williams, 2006) of objectives and constraints in the 6D DV
space. GPOC, GPQp , GP1s1 , GP1s2 and GP1SM denote the
GPs for estimating fOC, Qp, 1s1, 1s2, and 1SM, respec-

Figure 2. PO sets of rate of freshwater produced Qp vs. supply cost
fOC along with values of the probability of Pareto-optimality and
estimation uncertainty under training scenarios (a) T1, (b) T2, (c)
T3 and (d) T4.

tively. The GP training relies on an offline ML training strat-
egy, in which an initial set of training points is progres-
sively reinforced by adding new points, selected by identi-
fying the DV set with a maximum value of a score function
F = 0.5 ·R(dc)+0.5 ·R(∇G). R is a “normalization” oper-
ator (R(�) ∈[0,1]), “dc” is the distance of a candidate point
from the closest training point, and ∇G is the local gradient
based on GP model estimates. Figure 1b shows a flow chart
of the offline multi-objective optimisation (MOOA) frame-
work based on the proposed strategy.

For any DV set, GP models enable the estimation of fOC,
Qp, 1s1, 1s2 and 1SM and quantify the uncertainty on it.
The problem solution is represented by Pareto optimal (PO)
sets of “non-dominated” solutions, each of which is char-
acterized by a probability of Pareto optimality PPOi , esti-
mated by Monte Carlo simulation with a sample size of 100.
The reliability of the derived POPS is assessed by means
of the average probability of Pareto optimality of a trade-
off set (PPO), and the normalized root mean square errors
(NRMSE), εOC, εQP, ε1s1, ε1s2 and ε1SM, which quan-
tify the difference between GP model predictions and their
“true” values calculated by SEAWAT simulations over the
30 PO solutions with higher PPO.

3 Results and Discussion

Preliminary tests (not presented here) indicate that the per-
formance of the offline training approach depends on the
number of allowed training points NM. In these tests, PPO is
seen to increase with NM, as larger training datasets enhance
surrogate estimates, but gains become marginal for NM ap-
proaching 400. We thus investigate the case, denoted as T1,
in which NM = 400, against the case T2 in which 700 train-
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Table 1. Normalized root mean square errors of POPS in the train-
ing scenarios T1–T4.

Training εOC εQP ε1s1 ε1s2 ε1SM

T1 0.18 0.31 0.00 0.00 0.00
T2 0.32 0.44 0.21 0.35 0.00
T3 0.42 0.41 0.00 0.30 0.00
T4 0.40 0.39 0.00 0.47 0.00

ing points are uniformly distributed within the DV space, and
two other cases T3 and T4, which consist of two different re-
alizations of 1000 training points randomly distributed across
the DV space.

Figure 2 presents the PO sets obtained in (a) T1, (b) T2, (c)
T3 and (c) T4. Each point is plotted with a colour depending
on PPOi (see scale), and horizontal and vertical error bars
indicative of the surrogate uncertainty. POPS in T1 are char-
acterized by a remarkably smaller uncertainty than those in
T2, T3 and T4, indicating that the former are more robust and
more reliable than the latter. PPO in T1 is significantly higher
than in T2, T3 and T4, suggesting that the training approach
is more effective, other than computationally less intensive,
than traditional methods. NMRSE values reported in Table 1
confirm the better reliability of results obtained in T1.

4 Conclusions

The performance of a novel surrogate sampling strategy, us-
ing a novel ML algorithm for training point selection, was
assessed for an island multi-objective GPO problem. The
findings revealed that, compared to traditional training ap-
proaches, the proposed strategy can generate more reliable
POPS and consume a lower computational cost. For the for-
mulated GPO problem, the results in Fig. 2a indicate that
supply cost fOC increases gradually with a fresh groundwa-
ter supply Qp up to 950 m3 d−1. Beyond this point, fOC in-
creases sharply, suggesting that 950 m3 d−1 is a sustainability
threshold for balancing economic viability and SWI control.

Code availability. Island aquifer response to the pumping activ-
ities was simulated using version 4 of the SEAWAT ground-
water software (https://www.usgs.gov/software/seawat-computer,
United States Geological Survey, 2012). Scikit-learn, a pub-
licly available Python library, was employed to train and de-
velop Gaussian Process models (https://jmlr.csail.mit.edu/papers/
v12/pedregosa11a.html, Pedregosa et al., 2011). The Monte Carlo
stochastic runs, identification of new sampling points at each it-
eration, and plotting in this paper were carried out using various
Python libraries, including pandas, numpy, and matplotlib. These
libraries can be accessed through official Python websites: https:
//www.python.org/ (Python, 2024).

Data availability. The underlying research data for this study are
the pumping patterns and their corresponding management objec-
tive and constraint values. Data on aquifer response to the pumping
activities can be obtained by simulation using SEAWAT, and cal-
culations of the management objective and constraint values can
refer to https://doi.org/10.1029/2023WR034798 (Yu et al., 2023).
Research data are also available on request from the authors.

Author contributions. WY was responsible for the conceptualiza-
tion, methodology, formal analysis, software, visualization, writing
of the original draft, and review and editing of the manuscript. DB
contributed to the conceptualization, methodology, formal analysis,
and supervision, as well as the review and editing of the manuscript.
ASM and MG were involved in the supervision and review of the
writing. All authors have read and agreed to the published version
of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue
“Groundwater management in the context of global change: inte-
grating innovative approaches (EGU2024 HS8.2.1 session)”. It is a
result of the EGU General Assembly 2024, Vienna, Austria, 14–19
April 2024.

Acknowledgements. The authors sincerely thank the Engineering
and Physical Sciences Research Council (UK) and the National Sci-
ence Foundation (USA) for their financial support, with grant num-
bers EP/T018542/1 and 1903405, respectively. The authors also
would like to thank the editor, and two anonymous reviewers for
their kind feedback and insightful comments, which helped improve
the clarity of this paper. For the purpose of open access, the author
has applied a Creative Commons Attribution (CC BY) licence to
any Author Accepted Manuscript version arising.

Financial support. This research has been supported by the En-
gineering and Physical Sciences Research Council (grant no.
EP/T018542/1) and the National Science Foundation (grant no.
1903405).

Review statement. This paper was edited by Estanislao Pujades and
reviewed by two anonymous referees.

https://doi.org/10.5194/adgeo-64-23-2024 Adv. Geosci., 64, 23–26, 2024

https://www.usgs.gov/software/seawat-computer-program-simulation-three-dimensional-variable-density-ground-water-flow
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://www.python.org/
https://www.python.org/
https://doi.org/10.1029/2023WR034798


26 W. Yu et al.: An efficient surrogate-based optimization framework for groundwater management

References

Coulon, C., Lemieux, J. M., Pryet, A., Bayer, P., Young, N.
L., and Molson, J.: Pumping optimization under uncertainty
in an island freshwater lens using a sharp-interface seawa-
ter intrusion model, Water Resour. Res., 58, e2021WR031793,
https://doi.org/10.1029/2021WR031, 2022.

Gulley, J. D., Mayer, A. S., Martin, J. B., and Bedekar, V.:
Sea level rise and inundation of island interiors: Assess-
ing impacts of lake formation and evaporation on water re-
sources in arid climates, Geophys. Res. Lett., 43, 9712–9719,
https://doi.org/10.1002/2016GL070667, 2016.

Kourakos, G. and Mantoglou, A.: An efficient simulation-
optimization coupling for management of coastal aquifers, Hy-
drogeol. J., 23, 1167–1179, https://doi.org/10.1007/s10040-015-
1293-7, 2015.

Langevin, C. D., Thorne Jr., D. T., Dausman, A. M., Sukop, M. C.,
and Guo, W.: SEAWAT Version 4: A computer program for sim-
ulation of multi-species solute and heat transport, in: U.S. Geo-
logical Survey Techniques and Methods Book 6 (p. 39), Chapter
A22, https://doi.org/10.3133/tm6A22, 2008.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, https://jmlr.csail.
mit.edu/papers/v12/pedregosa11a.html (last access: 19 August
2024), 2011.

Python: python, https://www.python.org/ (last access: 19 August
2024), 2024.

Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes
for Machine Learning, the MIT Press, ISBN 026218253X,
https://doi.org/10.7551/mitpress/3206.001.0001, 2006.

United States Geological Survey: SEAWAT: A computer pro-
gram for simulation of three-dimensional variable-density
ground-water flow and transport, U.S. Geological Survey Soft-
ware Release [software], https://www.usgs.gov/software/seawat-
computer, 2012.

Yu, W., Baù, D., Mayer, A. S., Mancewicz, L., and Ger-
anmehr, M.: Investigating the impact of seawater intru-
sion on the operation cost of groundwater supply in is-
land aquifers, Water Resour. Res., 59, e2023WR034798,
https://doi.org/10.1029/2023WR034798, 2023.

Adv. Geosci., 64, 23–26, 2024 https://doi.org/10.5194/adgeo-64-23-2024

https://doi.org/10.1029/2021WR031
https://doi.org/10.1002/2016GL070667
https://doi.org/10.1007/s10040-015-1293-7
https://doi.org/10.1007/s10040-015-1293-7
https://doi.org/10.3133/tm6A22
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://www.python.org/
https://doi.org/10.7551/mitpress/3206.001.0001
https://www.usgs.gov/software/seawat-computer-program-simulation-three-dimensional-variable-density-ground-water-flow
https://www.usgs.gov/software/seawat-computer-program-simulation-three-dimensional-variable-density-ground-water-flow
https://doi.org/10.1029/2023WR034798

	Abstract
	Introduction
	Methods
	Study area
	SWI modelling and surrogate-based GPO

	Results and Discussion
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

