Articles | Volume 58
https://doi.org/10.5194/adgeo-58-77-2022
https://doi.org/10.5194/adgeo-58-77-2022
23 Nov 2022
 | 23 Nov 2022

The influence of sedimentary heterogeneity on the diffusion of radionuclides in the sandy facies of Opalinus Clay at the field scale

Chaofan Chen, Tao Yuan, Renchao Lu, Cornelius Fischer, Olaf Kolditz, and Haibing Shao

Related authors

Two-phase reactive transport modeling of heterogeneous gas production in a low- and intermediate-level waste repository
Falko Vehling and Haibing Shao
Saf. Nucl. Waste Disposal, 2, 129–129, https://doi.org/10.5194/sand-2-129-2023,https://doi.org/10.5194/sand-2-129-2023, 2023
Short summary
GeoLaB – Geothermal Laboratory in the crystalline Basement: synergies with research for a nuclear waste repository
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136, https://doi.org/10.5194/sand-2-135-2023,https://doi.org/10.5194/sand-2-135-2023, 2023
Short summary
AREHS: effects of changing boundary conditions on the development of hydrogeological systems: numerical long-term modelling considering thermal–hydraulic–mechanical (–chemical) coupled effects
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedtke, Tobias Meisel, Florian Zill, Anton Carl, Aron D. Gabriel, and Marcel Schlegel
Saf. Nucl. Waste Disposal, 2, 117–118, https://doi.org/10.5194/sand-2-117-2023,https://doi.org/10.5194/sand-2-117-2023, 2023
Short summary
Time to change the geoscientific perspective!?
Michael Kühn, Dirk Bosbach, Horst Geckeis, Vinzenz Brendler, and Olaf Kolditz
Saf. Nucl. Waste Disposal, 2, 195–195, https://doi.org/10.5194/sand-2-195-2023,https://doi.org/10.5194/sand-2-195-2023, 2023
Short summary
Transport in tight material enlightened by process tomography
Johannes Kulenkampff, Till Bollermann, Maria A. Cardenas Rivera, and Cornelius Fischer
Saf. Nucl. Waste Disposal, 1, 293–294, https://doi.org/10.5194/sand-1-293-2021,https://doi.org/10.5194/sand-1-293-2021, 2021

Cited articles

Appelo, C. A. J. and Wersin, P.: Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay, Environ. Sci. Technol., 41, 5002–5007, 2007. a, b
Bear, J. and Bachmat, Y.: Introduction to modeling of transport phenomena in porous media, edited by: Vizcaino, A., Vol. 4, Springer Science & Business Media, ISBN 978-94-009-1926-6, 2012. a
Berg, H. C.: Diffusion: microscopic theory, in: Random walks in biology, 5–16, Princeton University Press, https://doi.org/10.1515/9781400820023-004, 2018. a
Bilke, L., Flemisch, B., Kalbacher, T., Kolditz, O., Helmig, R., and Nagel, T.: Development of Open-Source Porous Media Simulators: Principles and Experiences, Transport Porous Med., 130, 337–361, https://doi.org/10.1007/s11242-019-01310-1, 2019. a, b
Bilke, L., Fischer, T., Naumov, D., Lehmann, C., Wang, W., Lu, R., Meng, B., Rink, K., Grunwald, N., Buchwald, J., Silbermann, C., Habel, R., Günther, L., Mollaali, M., Meisel, T., Randow, J., Einspänner, S., Shao, H., Kurgyis, K., Kolditz, O., and Garibay, J.: OpenGeoSys, Zenodo [software], https://doi.org/10.5281/zenodo.7092676, 2022. a
Download
Short summary
The moving distance of the diffusion front is farther away the canister center, along the direction with the neighboring layer having lower diffusion coefficient. When the bedding angle increases, the diffusion front moves farther in z+ direction, reflecting the increase in effective diffusivity and higher impact of parallel-to-bedding diffusion. The neighboring layers can slightly reshape the diffusion front line of the radionuclide.