Battistoni, G., Boehlen, T., Cerutti, F., Chin, P. W., Esposito, L. S.,
Fassò, A., Ferrari, A., Lechner, A., Empl, A., Mairani, A., Mereghetti,
A., Ortega, P. G., Ranft, J., Roesler, S., Sala, P. R., Vlachoudis, V., and
Smirnov, G.: Overview of the FLUKA code, Ann. Nucl. Energy, 82,
10–18,
https://doi.org/10.1016/j.anucene.2014.11.007, 2015.
a,
b,
c
Billings, S. and Hovgaard, J.: Modeling detector response in airborne
gamma-ray spectrometry, Geophysics, 64, 1378–1392,
https://doi.org/10.1190/1.1444643,
1999.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Bissaldi, E., Von Kienlin, A., Lichti, G., Steinle, H., Bhat, P. N., Briggs,
M. S., Fishman, G. J., Hoover, A. S., Kippen, R. M., Krumrey, M., Gerlach,
M., Connaughton, V., Diehl, R., Greiner, J., Van Der Horst, A. J.,
Kouveliotou, C., McBreen, S., Meegan, C. A., Paciesas, W. S., Preece, R. D.,
and Wilson-Hodge, C. A.: Ground-based calibration and characterization of
the Fermi gamma-ray burst monitor detectors, Exp. Astron., 24,
47–88,
https://doi.org/10.1007/s10686-008-9135-4, 2009.
a
Böhlen, T. T., Cerutti, F., Chin, M. P., Fassò, A., Ferrari, A.,
Ortega, P. G., Mairani, A., Sala, P. R., Smirnov, G., and Vlachoudis, V.:
The FLUKA Code: Developments and challenges for high energy and medical
applications, Nucl. Data Sheets, 120, 211–214,
https://doi.org/10.1016/j.nds.2014.07.049, 2014.
a,
b
Breitenmoser, D., Butterweck, G., Kasprzak, M. M., Yukihara, E. G., and Mayer,
S.: FLUKA user routines for spectral detector response simulations, Research Collection [code],
https://doi.org/10.3929/ethz-b-000528892, 2022a.
a
Breitenmoser, D., Butterweck, G., Kasprzak, M. M., Yukihara, E. G., and Mayer,
S.: Laboratory based Spectral Measurement Data of the Swiss Airborne
Gamma-ray Spectrometer RLL, Research Collection [data set],
https://doi.org/10.3929/ethz-b-000528920,
2022b.
a
Brown, D. A., Chadwick, M. B., Capote, R., Kahler, A. C., Trkov, A., Herman,
M. W., Sonzogni, A. A., Danon, Y., Carlson, A. D., Dunn, M., Smith, D. L.,
Hale, G. M., Arbanas, G., Arcilla, R., Bates, C. R., Beck, B., Becker, B.,
Brown, F., Casperson, R. J., Conlin, J., Cullen, D. E., Descalle, M. A.,
Firestone, R., Gaines, T., Guber, K. H., Hawari, A. I., Holmes, J., Johnson,
T. D., Kawano, T., Kiedrowski, B. C., Koning, A. J., Kopecky, S., Leal, L.,
Lestone, J. P., Lubitz, C., Márquez Damián, J. I., Mattoon,
C. M., McCutchan, E. A., Mughabghab, S., Navratil, P., Neudecker, D., Nobre,
G. P., Noguere, G., Paris, M., Pigni, M. T., Plompen, A. J., Pritychenko, B.,
Pronyaev, V. G., Roubtsov, D., Rochman, D., Romano, P., Schillebeeckx, P.,
Simakov, S., Sin, M., Sirakov, I., Sleaford, B., Sobes, V., Soukhovitskii,
E. S., Stetcu, I., Talou, P., Thompson, I., van der Marck, S.,
Welser-Sherrill, L., Wiarda, D., White, M., Wormald, J. L., Wright, R. Q.,
Zerkle, M., Žerovnik, G., and Zhu, Y.: ENDF/B-VIII.0: The 8th Major
Release of the Nuclear Reaction Data Library with CIELO-project Cross
Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets,
148, 1–142,
https://doi.org/10.1016/j.nds.2018.02.001, 2018.
a,
b,
c
Butterweck, G., Bucher, B., Breitenmoser, D., Rybach, L., Poretti, C.,
Maillard, S., Kasprzak, M., Ferreri, G., Gurtner, A., Astner, M., Hauenstein,
F., Straub, M., Bucher, M., Harm, C., Scharding, G., and Mayer, S.:
Aeroradiometric measurements in the framework of the Swiss exercise ARM20,
Tech. rep., Paul Scherrer Institute, Villigen PSI, Switzerland,
https://doi.org/10.13140/RG.2.2.15326.51526, 2021.
a
Cano-Ott, D., Tain, J. L., Gadea, A., Rubio, B., Batist, L., Karny, M., and
Roeckl, E.: Monte Carlo simulation of the response of a large NaI(Tl)total
absorption spectrometer for
β-decay studies, Nucl. Instrum.
Meth. A, 430, 333–347,
https://doi.org/10.1016/S0168-9002(99)00217-X,
1999.
a,
b,
c,
d
Casanovas, R., Morant, J. J., and Salvadó, M.: Energy and resolution
calibration of NaI(Tl) and LaBr 3(Ce) scintillators and validation of an EGS5
Monte Carlo user code for efficiency calculations, Nucl. Instrum.
Meth. A, 675, 78–83,
https://doi.org/10.1016/j.nima.2012.02.006, 2012.
a
Coleman, T. F. and Li, Y.: An Interior Trust Region Approach for Nonlinear
Minimization Subject to Bounds, SIAM J. Otimiz., 6, 418–445,
https://doi.org/10.1137/0806023, 1996.
a,
b
Connor, D., Martin, P. G., and Scott, T. B.: Airborne radiation mapping:
overview and application of current and future aerial systems, Int. J. Remote Sens., 37, 5953–5987,
https://doi.org/10.1080/01431161.2016.1252474, 2016.
a,
b
Dickson, B. H., Bailey, R. C., and Grasty, R. L.: Utilizing multi-channel
airborne gamma-ray spectra, Can. J. Earth Sci., 18,
1793–1801,
https://doi.org/10.1139/E81-167, 1981.
a
Erdi-Krausz, G., Matolin, M., Minty, B., Nicolet, J.-P., Reford, W. S., and
Schetselaar, E.: Guidelines for radioelement mapping using gamma ray
spectrometry data, TECDOC No. 1363, Tech. rep., International Atomic Energy
Agency, Vienna, ISBN: 92-0-108303-3, 2003.
a,
b,
c
Forster, R. A., Booth, T. E., and Pederson, S. P.: Ten new checks to assess
the statistical quality of Monte Carlo solutions in MCNP, in: 8.
International Conference on Radiation Shielding, Los Alamos National
Laboratory, Arlington, TX, United States, 24–27 Apr 1994, 10 p., 1994. a
Fortin, R., Hovgaard, J., and Bates, M.: Airborne gamma-ray spectrometry in
2017: solid ground for new development., in: Sixth Decennial International
Conference on Mineral Exploration, Toronto, 22–25 October 2017, 129–138, 2017. a
Gardner, R. P. and Sood, A.: A Monte Carlo simulation approach for generating
NaI detector response functions (DRFs) that accounts for non-linearity and
variable flat continua, Nucl. Instrum. Meth. B, 213, 87–99,
https://doi.org/10.1016/S0168-583X(03)01539-8, 2004.
a,
b,
c
Grasty, R. L., Glynn, J. E., and Grant, J. A.: The analysis of multichannel
airborne gamma‐ray spectra, Geophysics, 50, 2611–2620,
https://doi.org/10.1190/1.1441886, 1985.
a
Knoll, G. F.: Radiation Detection and Measurement, 4th edn., John Wiley and Sons, New York, NY, ISBN: 9780470131480, 2010.
a,
b,
c,
d,
e,
f,
g,
h
Kulisek, J. A., Wittman, R. S., Miller, E. A., Kernan, W. J., McCall, J. D.,
McConn, R. J., Schweppe, J. E., Seifert, C. E., Stave, S. C., and Stewart,
T. N.: A 3D simulation look-up library for real-time airborne gamma-ray
spectroscopy, Nucl. Instrum. Meth. A, 879,
84–91,
https://doi.org/10.1016/j.nima.2017.10.030, 2018.
a,
b,
c,
d,
e,
f,
g
Li, F., Cheng, Z., Tian, C., Xiao, H., Zhang, M., and Ge, L.: Progress in
recent airborne gamma ray spectrometry measurement technology, Appl. Spectrosc. Rev., 56, 255–288,
https://doi.org/10.1080/05704928.2020.1768107, 2020.
a
Minty, B. R., McFadden, P., and Kennett, B. L.: Multichannel processing for
airborne gamma-ray spectrometry, Geophysics, 63, 1971–1985,
https://doi.org/10.1190/1.1444491, 1998.
a
Moses, W. W., Bizarri, G. A., Williams, R. T., Payne, S. A., Vasil'Ev, A. N.,
Singh, J., Li, Q., Grim, J. Q., and Choong, W. S.: The origins of
scintillator non-proportionality, IEEE T. Nucl. Sci., 59,
2038–2044,
https://doi.org/10.1109/TNS.2012.2186463, 2012.
a,
b
Payne, S. A., Cherepy, N. J., Hull, G., Valentine, J. D., Moses, W. W., and
Choong, W. S.: Nonproportionality of scintillator detectors: Theory and
experiment, IEEE T. Nucl. Sci., 56, 2506–2512,
https://doi.org/10.1109/TNS.2009.2023657, 2009.
a,
b
Pearce, A.: Recommended nuclear decay data, Tech. rep. (NPL Report IR 6), National Physical
Laboratory, Teddington, ISSN number: 1754-2952, 2008.
a,
b
Pradeep Kumar, K. A., Shanmugha Sundaram, G. A., Sharma, B. K., Venkatesh, S.,
and Thiruvengadathan, R.: Advances in gamma radiation detection systems for
emergency radiation monitoring, Nucl. Eng. Technol., 52,
2151–2161,
https://doi.org/10.1016/j.net.2020.03.014, 2020.
a
Prettyman, T. H., Hagerty, J. J., Elphic, R. C., Feldman, W. C., Lawrence,
D. J., McKinney, G. W., and Vaniman, D. T.: Elemental composition of the
lunar surface: Analysis of gamma ray spectroscopy data from Lunar
Prospector, J. Geophys. Res.-Planet., 111, 41 p.,
https://doi.org/10.1029/2005JE002656, 2006.
a
Regis, R. G. and Shoemaker, C. A.: A Stochastic Radial Basis Function Method
for the Global Optimization of Expensive Functions, INFORMS J.
Comput., 19, 497–509,
https://doi.org/10.1287/IJOC.1060.0182, 2007.
a
Salgado, C. M., Brandão, L. E., Schirru, R., Pereira, C. M., and Conti,
C. C.: Validation of a NaI(Tl) detector's model developed with MCNP-X code,
Prog. Nucl. Energ., 59, 19–25,
https://doi.org/10.1016/j.pnucene.2012.03.006,
2012.
a
Shi, H. X., Chen, B. X., Li, T. Z., and Yun, D.: Precise Monte Carlo
simulation of gamma-ray response functions for an NaI(Tl) detector, Appl. Radiat. Isotopes, 57, 517–524,
https://doi.org/10.1016/S0969-8043(02)00140-9,
2002.
a,
b,
c,
d
Sinclair, L. E., Fortin, R., Buckle, J. L., Coyle, M. J., Van Brabant, R. A.,
Harvey, B. J., Seywerd, H. C., and McCurdy, M. W.: Aerial Mobile Radiation
Survey Following Detonation of a Radiological Dispersal Device, Health
Phys., 110, 458–470,
https://doi.org/10.1097/HP.0000000000000491, 2016.
a,
b,
c,
d,
e
Torii, T., Sugita, T., Okada, C. E., Reed, M. S., and Blumenthal, D. J.:
Enhanced Analysis Methods to Derive the Spatial Distribution of 131I
Deposition on the Ground by Airborne Surveys at an Early Stage after the
Fukushima Daiichi Nuclear Power Plant Accident, Health Phys., 105,
192–200,
https://doi.org/10.1097/HP.0b013e318294444e, 2013.
a,
b,
c,
d,
e,
f,
g,
h
Van der Graaf, E. R., Limburg, J., Koomans, R. L., and Tijs, M.: Monte Carlo
based calibration of scintillation detectors for laboratory and in situ gamma
ray measurements, J. Environ. Radioactiv., 102, 270–282,
https://doi.org/10.1016/j.jenvrad.2010.12.001, 2011.
a,
b
Vlachoudis, V.: Flair: A powerful but user friendly graphical interface for
FLUKA, in: International Conference on Mathematics, Computational Methods
and Reactor Physics (M&C 2009), American Nuclear Society, Saratoga
Springs, New York, 3–7 May 2009, 11 p., ISBN: 978-0-89448-069-0, 2009.
a,
b
Zerby, C. D., Meyer, A., and Murray, R. B.: Intrinsic line broadening in
NaI(Tl) gamma-ray spectrometers, Nucl. Instrum. Methods, 12,
115–123,
https://doi.org/10.1016/0029-554X(61)90119-7, 1961.
a
Zhang, Q., Guo, Y., Xu, S., Xiong, S., Ge, L., Wu, H., Gu, Y., Zeng, G., and
Lai, W.: A hybrid method on sourceless sensitivity calculation for airborne
gamma-ray spectrometer, Appl. Radiat. Isotopes, 137, 68–72,
https://doi.org/10.1016/j.apradiso.2018.03.009, 2018.
a,
b,
c,
d