Articles | Volume 57
https://doi.org/10.5194/adgeo-57-37-2022
https://doi.org/10.5194/adgeo-57-37-2022
10 Mar 2022
 | 10 Mar 2022

Radon metrology for use in climate change observation and radiation protection at the environmental level

Stefan Röttger, Annette Röttger, Claudia Grossi, Arturo Vargas, Ute Karstens, Giorgia Cinelli, Edward Chung, Dafina Kikaj, Chris Rennick, Florian Mertes, and Ileana Radulescu

Related authors

Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024,https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Two new 222Rn emanation sources – a comparison study
Tanita J. Ballé, Stefan Röttger, Florian Mertes, Anja Honig, Petr Kovar, Petr P. S. Otáhal, and Annette Röttger
Atmos. Meas. Tech., 17, 2055–2065, https://doi.org/10.5194/amt-17-2055-2024,https://doi.org/10.5194/amt-17-2055-2024, 2024
Short summary
Approximate sequential Bayesian filtering to estimate 222Rn emanation from 226Ra sources using spectral time series
Florian Mertes, Stefan Röttger, and Annette Röttger
J. Sens. Sens. Syst., 12, 147–161, https://doi.org/10.5194/jsss-12-147-2023,https://doi.org/10.5194/jsss-12-147-2023, 2023
Short summary
Portable two-filter dual-flow-loop 222Rn detector: stand-alone monitor and calibration transfer device
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022,https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary

Cited articles

Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V., Monfray, P., O'Doherty, S., Spain, T., and Jennings, S.: European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace Head, Ireland, J. Geophys. Res.-Atmos., 105, 1351–1366, https://doi.org/10.1029/1999JD900821, 2000. 
Bossew P.: Radon priority areas – definition, estimation and uncertainty, Nuclear Technology and Radiation Protection, 33, 286–292, https://doi.org/10.2298/NTRP180515011B, 2018. 
Bossew, P., Cinelli, G., Ciotoli, G., Crowley, Q., Cort, M., Medina, J., Gruber, V., Petermann, E., and Tollefsen, T.: Development of a geogenic radon hazard index – concept, history, experiences, Int. J. Environ. Res. Public Health, 17, 4134​​​​​​​, https://doi.org/10.3390/ijerph17114134, 2020. 
Brunke, E.-G., Labuschagne, C., Parker, B., van der Spuy, D., and Whittlestone, W.: Cape Point GAW Station 222Rn detector: factors affecting sensitivity and accuracy, Atmos. Environ., 36, 2257–2262, https://doi.org/10.1016/S1352-2310(02)00196-6, 2002. 
Cardellini, F.: New experimental activity at ENEA INMRI radon laboratory, WORKSHOP: The second radon-in-field international intercomparison for passive measurement devices: dwellings and workplaces, Milano, Italy, https://www.airp-asso.it/wp-content/uploads/convegni/2017_interconfronto/day2/7 Francesco Cardellini.pdf (last access: 2 March 2022), 2017. 
Download
Short summary
Radon gas is the largest source of public exposure to naturally occurring radioactivity. Radon can also be used, as a tracer to improve indirectly the estimates of greenhouse gases important for supporting successful GHG mitigation strategies. Both climate and radiation protection research communities need improved traceable low-level atmospheric radon measurements. The EMPIR project 19ENV01 traceRadon started to provide the necessary measurement infrastructure and transfer standards.