Radon metrology for use in climate change observation and radiation protection at the environmental level
Physikalisch-Technische Bundesanstalt, Braunschweig, 38116,
Germany
Annette Röttger
Physikalisch-Technische Bundesanstalt, Braunschweig, 38116,
Germany
Claudia Grossi
Institute of Energy Technologies (INTE), Universitat Politècnica de Catalunya, Barcelona, 08028, Spain
Arturo Vargas
Institute of Energy Technologies (INTE), Universitat Politècnica de Catalunya, Barcelona, 08028, Spain
Ute Karstens
ICOS ERIC – Carbon Portal, Lund University, Lund, 22100, Sweden
Giorgia Cinelli
European Commision, Joint Research Centre, Ispra 21027, Italy
Edward Chung
National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United
Kingdom
School of GeoSciences, University of Edinburgh, Edinburgh, United
Kingdom
Dafina Kikaj
National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United
Kingdom
Chris Rennick
National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United
Kingdom
Florian Mertes
Physikalisch-Technische Bundesanstalt, Braunschweig, 38116,
Germany
Ileana Radulescu
Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear
Engineering, Bucharest, Ilfov, 077125, Romania
Related authors
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Tanita J. Ballé, Stefan Röttger, Florian Mertes, Anja Honig, Petr Kovar, Petr P. S. Otáhal, and Annette Röttger
Atmos. Meas. Tech., 17, 2055–2065, https://doi.org/10.5194/amt-17-2055-2024, https://doi.org/10.5194/amt-17-2055-2024, 2024
Short summary
Short summary
Over 50 % of naturally occurring radiation exposure is due to 222Rn (progenies), but traceability of measurements to the International System of Units (SI) is lacking. To address this, two new 222Rn sources were developed to be used as calibration standards for reference instruments. These sources were investigated by comparing their estimated calibration factors for one instrument. Despite the small differences derived, all uncertainties are well within the intended target uncertainty of 10 %.
Florian Mertes, Stefan Röttger, and Annette Röttger
J. Sens. Sens. Syst., 12, 147–161, https://doi.org/10.5194/jsss-12-147-2023, https://doi.org/10.5194/jsss-12-147-2023, 2023
Short summary
Short summary
In this work, a novel approach to deduce the release of the natural radioactive noble gas 222Rn from solid sources containing the isotope 226Ra is presented. Therein, supporting radioactivity measurements of the source are used in conjunction with a theoretical description of the dynamics. For radiation protection and environmental research, reliable and comparable 222Rn measurements, and therefore reference atmospheres of 222Rn, are needed. This work improves their realization.
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022, https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary
Short summary
There is a growing need in health and climate research for high-quality radon observations. A variety of radon monitors, with different uncertainties, operate across global networks. Better compatibility between the measurements is required. Here we describe a novel, portable two-filter radon monitor with a calibration traceable to the International System of Units, and demonstrate the transfer of a traceable calibration from this instrument to a separate monitor under field conditions.
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025, https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary
Short summary
We present a protocol to improve confidence in atmospheric radon measurements, enabling site comparisons and integration with greenhouse gas data. As a natural tracer, radon provides an independent check of transport model performance. This standardized method enhances radon’s use as a metric for model evaluation. Beyond UK observatories, it can support broader networks like ICOS and WMO/GAW, advancing global atmospheric research.
Carlos Gómez-Ortiz, Guillaume Monteil, Ute Karstens, and Marko Scholze
EGUsphere, https://doi.org/10.5194/egusphere-2024-3013, https://doi.org/10.5194/egusphere-2024-3013, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In 2024, an intensive sampling campaign is being conducted to improve fossil CO₂ emission estimates in Europe using 14C measurements. By testing different strategies for selecting air samples, this study shows that increasing sample frequency and carefully choosing samples based on their fossil fuel and nuclear content leads to more accurate results, reducing the uncertainty and bias of the estimates.
Camille Yver-Kwok, Michel Ramonet, Léonard Rivier, Jinghui Lian, Claudia Grossi, Roger Curcoll, Dafina Kikaj, Edward Chung, and Ute Karstens
EGUsphere, https://doi.org/10.5194/egusphere-2024-3107, https://doi.org/10.5194/egusphere-2024-3107, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Here, we use greenhouse gas and radon data from a tall tower in France to estimate their fluxes within the station footprint from January 2017 to December 2022 using the Radon Tracer Method. Using the latest radon exhalation maps and standardized radon measurements, we found the greenhouse gas fluxes to be in agreement with the literature. Compared to inventories, there is a general agreement except for carbon dioxide where we show that the biogenic fluxes are not well represented in the model.
Roger Curcoll, Josep-Anton Morguí, Alba Àgueda, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1370, https://doi.org/10.5194/egusphere-2024-1370, 2024
Short summary
Short summary
In this work, the methane emissions from the rice crops of the Ebro Delta were estimated with the Radon Tracer Method, using backtrajectories and radon and methane observations. Estimated fluxes show a strong seasonality with maximums in October, corresponding with the period of harvest and straw incorporation. The estimated annual methane emission was about 262.8 kg CH4 ha‑1. Results were compared with fluxes obtained with static chambers showing a stunning agreement between both methodologies.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Tanita J. Ballé, Stefan Röttger, Florian Mertes, Anja Honig, Petr Kovar, Petr P. S. Otáhal, and Annette Röttger
Atmos. Meas. Tech., 17, 2055–2065, https://doi.org/10.5194/amt-17-2055-2024, https://doi.org/10.5194/amt-17-2055-2024, 2024
Short summary
Short summary
Over 50 % of naturally occurring radiation exposure is due to 222Rn (progenies), but traceability of measurements to the International System of Units (SI) is lacking. To address this, two new 222Rn sources were developed to be used as calibration standards for reference instruments. These sources were investigated by comparing their estimated calibration factors for one instrument. Despite the small differences derived, all uncertainties are well within the intended target uncertainty of 10 %.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Zhendong Wu, Alex Vermeulen, Yousuke Sawa, Ute Karstens, Wouter Peters, Remco de Kok, Xin Lan, Yasuyuki Nagai, Akinori Ogi, and Oksana Tarasova
Atmos. Chem. Phys., 24, 1249–1264, https://doi.org/10.5194/acp-24-1249-2024, https://doi.org/10.5194/acp-24-1249-2024, 2024
Short summary
Short summary
This study focuses on exploring the differences in calculating global surface CO2 and its growth rate, considering the impact of analysis methodologies and site selection. Our study reveals that the current global CO2 network has a good capacity to represent global surface CO2 and its growth rate, as well as trends in atmospheric CO2 mass changes. However, small differences exist in different analyses due to the impact of methodology and site selection.
Alessandro Zanchetta, Linda M. J. Kooijmans, Steven van Heuven, Andrea Scifo, Hubertus A. Scheeren, Ivan Mammarella, Ute Karstens, Jin Ma, Maarten Krol, and Huilin Chen
Biogeosciences, 20, 3539–3553, https://doi.org/10.5194/bg-20-3539-2023, https://doi.org/10.5194/bg-20-3539-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) has been suggested as a tool to estimate carbon dioxide (CO2) uptake by plants during photosynthesis. However, understanding its sources and sinks is critical to preventing biases in this estimate. Combining observations and models, this study proves that regional sources occasionally influence the measurements at the 60 m tall Lutjewad tower (1 m a.s.l.; 53°24′ N, 6°21′ E) in the Netherlands. Moreover, it estimates nighttime COS fluxes to be −3.0 ± 2.6 pmol m−2 s−1.
Sara M. Defratyka, James L. France, Rebecca E. Fisher, Dave Lowry, Julianne M. Fernandez, Semra Bakkaloglu, Camille Yver-Kwok, Jean-Daniel Paris, Philippe Bousquet, Tim Arnold, Chris Rennick, Jon Helmore, Nigel Yarrow, and Euan G. Nisbet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1490, https://doi.org/10.5194/egusphere-2023-1490, 2023
Preprint archived
Short summary
Short summary
We are focused on verification of δ13CH4 measurements in near-source conditions and we have provided an insight into the impact of chosen calculation methods for determined isotopic signatures. Our study offers a step forward for establishing an unified, robust, and reliable analytical technique to determine δ13CH4 of methane sources. Our recommended analytical approach reduces biases and uncertainties coming from measurement conditions, data clustering and various available fitting methods.
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023, https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Short summary
The automatic and low-maintenance radon flux system Autoflux, completed with environmental soil and atmosphere sensors, has been theoretically and experimentally characterized and calibrated under laboratory conditions to be used as transfer standard for in situ measurements. It will offer for the first time long-term measurements to validate radon flux maps used by the climate and the radiation protection communities for assessing the radon gas emissions in the atmosphere.
Ida Storm, Ute Karstens, Claudio D'Onofrio, Alex Vermeulen, and Wouter Peters
Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, https://doi.org/10.5194/acp-23-4993-2023, 2023
Short summary
Short summary
In this study, we evaluate what is in the influence regions of the ICOS atmospheric measurement stations to gain insight into what land cover types and land-cover-associated fluxes the network represents. Subsequently, insights about strengths, weaknesses, and potential gaps can assist in future network expansion decisions. The network is concentrated in central Europe, which leads to a general overrepresentation of coniferous forest and cropland and underrepresentation of grass and shrubland.
Florian Mertes, Stefan Röttger, and Annette Röttger
J. Sens. Sens. Syst., 12, 147–161, https://doi.org/10.5194/jsss-12-147-2023, https://doi.org/10.5194/jsss-12-147-2023, 2023
Short summary
Short summary
In this work, a novel approach to deduce the release of the natural radioactive noble gas 222Rn from solid sources containing the isotope 226Ra is presented. Therein, supporting radioactivity measurements of the source are used in conjunction with a theoretical description of the dynamics. For radiation protection and environmental research, reliable and comparable 222Rn measurements, and therefore reference atmospheres of 222Rn, are needed. This work improves their realization.
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023, https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Short summary
Using different transport models results in large errors in optimized fluxes in the atmospheric inversions. Boundary conditions and inversion system configurations lead to a smaller but non-negligible impact. The findings highlight the importance to validate transport models for further developments but also to properly account for such errors in inverse modelling. This will help narrow the convergence of gas estimates reported in the scientific literature from different inversion frameworks.
Auke M. van der Woude, Remco de Kok, Naomi Smith, Ingrid T. Luijkx, Santiago Botía, Ute Karstens, Linda M. J. Kooijmans, Gerbrand Koren, Harro A. J. Meijer, Gert-Jan Steeneveld, Ida Storm, Ingrid Super, Hubertus A. Scheeren, Alex Vermeulen, and Wouter Peters
Earth Syst. Sci. Data, 15, 579–605, https://doi.org/10.5194/essd-15-579-2023, https://doi.org/10.5194/essd-15-579-2023, 2023
Short summary
Short summary
To monitor the progress towards the CO2 emission goals set out in the Paris Agreement, the European Union requires an independent validation of emitted CO2. For this validation, atmospheric measurements of CO2 can be used, together with first-guess estimates of CO2 emissions and uptake. To quickly inform end users, it is imperative that this happens in near real-time. To aid these efforts, we create estimates of European CO2 exchange at high resolution in near real time.
Simone M. Pieber, Béla Tuzson, Stephan Henne, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Dominik Brunner, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 22, 10721–10749, https://doi.org/10.5194/acp-22-10721-2022, https://doi.org/10.5194/acp-22-10721-2022, 2022
Short summary
Short summary
Understanding regional greenhouse gas emissions into the atmosphere is a prerequisite to mitigate climate change. In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of the high Alpine observatory Jungfraujoch (JFJ, Switzerland, 3580 m a.s.l.). To this purpose, we combined receptor-oriented atmospheric transport simulations for CO2 concentration in the period 2009–2017 with stable carbon isotope (δ13C–CO2) information.
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022, https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary
Short summary
There is a growing need in health and climate research for high-quality radon observations. A variety of radon monitors, with different uncertainties, operate across global networks. Better compatibility between the measurements is required. Here we describe a novel, portable two-filter radon monitor with a calibration traceable to the International System of Units, and demonstrate the transfer of a traceable calibration from this instrument to a separate monitor under field conditions.
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022, https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
Short summary
Low-cost air enquirer kits, including CO2 and environmental parameter sensors, have been designed, built, and tested in a new steady-state through-flow chamber for simultaneous measurements of CO2 fluxes in soil and CO2 concentrations in air. A CO2 calibration and multiparametric fitting reduced the total uncertainty of CO2 concentration by 90 %. This system allows continuous measurement of CO2 fluxes and CO2 ambient air, with low cost (EUR 1200), low energy demand (<5 W), and low maintenance.
Alice E. Ramsden, Anita L. Ganesan, Luke M. Western, Matthew Rigby, Alistair J. Manning, Amy Foulds, James L. France, Patrick Barker, Peter Levy, Daniel Say, Adam Wisher, Tim Arnold, Chris Rennick, Kieran M. Stanley, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 22, 3911–3929, https://doi.org/10.5194/acp-22-3911-2022, https://doi.org/10.5194/acp-22-3911-2022, 2022
Short summary
Short summary
Quantifying methane emissions from different sources is a key focus of current research. We present a method for estimating sectoral methane emissions that uses ethane as a tracer for fossil fuel methane. By incorporating variable ethane : methane emission ratios into this model, we produce emissions estimates with improved uncertainty characterisation. This method will be particularly useful for studying methane emissions in areas with complex distributions of sources.
Ingeborg Levin, Ute Karstens, Samuel Hammer, Julian DellaColetta, Fabian Maier, and Maksym Gachkivskyi
Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021, https://doi.org/10.5194/acp-21-17907-2021, 2021
Short summary
Short summary
The radon tracer method is applied to atmospheric methane and radon observations from the upper Rhine valley to independently estimate methane emissions from the region. Comparison of our top-down results with bottom-up inventory data requires high-resolution footprint modelling and representative radon flux data. In agreement with inventories, observed emissions decreased, but only until 2005. A limitation of this method is that point-source emissions are not captured or not fully captured.
Annette Röttger, Attila Veres, Vladimir Sochor, Massimo Pinto, Michal Derlacinski, Mihail-Razvan Ioan, Amra Sabeta, Robert Bernat, Christelle Adam-Guillermin, João Henrique Gracia Alves, Denis Glavič-Cindro, Steven Bell, Britt Wens, Linda Persson, Miloš Živanović, and Reetta Nylund
Adv. Geosci., 57, 1–7, https://doi.org/10.5194/adgeo-57-1-2021, https://doi.org/10.5194/adgeo-57-1-2021, 2021
Short summary
Short summary
The goal of the EMN is a harmonized, sustainable, coordinated and intelligently specialized infrastructure to support the needs expressed in the European Radiation Protection Ordinance. Such an EMN under the umbrella of EURAMET is in the founding phase and is being prepared in parallel by the EMPIR project 19NET03 supportBSS with five technical work packages. EURAMET is the Regional Metrology Organisation (RMO) of Europe. The EMN was established by signature on 16 September 2021.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021, https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Short summary
We present an evaluation of the UK's methane emissions between 2013 and 2020 using a network of tall tower measurement sites. We find emissions that are consistent in both magnitude and trend with the UK's reported emissions, with a declining trend driven by a decrease in emissions from England. The impact of various components of the modelling set-up on these findings are explored through a number of sensitivity studies.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Ingeborg Levin, Ute Karstens, Markus Eritt, Fabian Maier, Sabrina Arnold, Daniel Rzesanke, Samuel Hammer, Michel Ramonet, Gabriela Vítková, Sebastien Conil, Michal Heliasz, Dagmar Kubistin, and Matthias Lindauer
Atmos. Chem. Phys., 20, 11161–11180, https://doi.org/10.5194/acp-20-11161-2020, https://doi.org/10.5194/acp-20-11161-2020, 2020
Short summary
Short summary
Based on observations and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling, a sampling strategy has been developed for tall tower stations of the Integrated Carbon Observation System (ICOS) research infrastructure atmospheric station network. This strategy allows independent quality control of in situ measurements, provides representative coverage of the influence area of the sites, and is capable of automated targeted sampling of fossil fuel CO2 emission hotspots.
Peter G. Simmonds, Matthew Rigby, Alistair J. Manning, Sunyoung Park, Kieran M. Stanley, Archie McCulloch, Stephan Henne, Francesco Graziosi, Michela Maione, Jgor Arduini, Stefan Reimann, Martin K. Vollmer, Jens Mühle, Simon O'Doherty, Dickon Young, Paul B. Krummel, Paul J. Fraser, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Mi-Kyung Park, Hyeri Park, Tim Arnold, Chris Rennick, L. Paul Steele, Blagoj Mitrevski, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 20, 7271–7290, https://doi.org/10.5194/acp-20-7271-2020, https://doi.org/10.5194/acp-20-7271-2020, 2020
Short summary
Short summary
Sulfur hexafluoride (SF6) is a potent greenhouse gas which is regulated under the Kyoto Protocol. From a 40-year record of measurements, collected at five global monitoring sites and archived air samples, we show that its concentration in the atmosphere has steadily increased. Using modelling techniques, we estimate that global emissions have increased by about 24 % over the past decade. We find that this increase is driven by the demand for SF6-insulated switchgear in developing countries.
Claudia Grossi, Scott D. Chambers, Olivier Llido, Felix R. Vogel, Victor Kazan, Alessandro Capuana, Sylvester Werczynski, Roger Curcoll, Marc Delmotte, Arturo Vargas, Josep-Anton Morguí, Ingeborg Levin, and Michel Ramonet
Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, https://doi.org/10.5194/amt-13-2241-2020, 2020
Short summary
Short summary
The sustainable support of radon metrology at the environmental level offers new scientific possibilities for the quantification of greenhouse gas (GHG) emissions and the determination of their source terms as well as for the identification of radioactive sources for the assessment of radiation exposure. This study helps to harmonize the techniques commonly used for atmospheric radon and radon progeny activity concentration measurements.
Marco Sangiorgi, Miguel Angel Hernández-Ceballos, Kevin Jackson, Giorgia Cinelli, Konstantins Bogucarskis, Luca De Felice, Andrei Patrascu, and Marc De Cort
Earth Syst. Sci. Data, 12, 109–118, https://doi.org/10.5194/essd-12-109-2020, https://doi.org/10.5194/essd-12-109-2020, 2020
Short summary
Short summary
After the Chernobyl accident in 1986 the European Commission has invested resources for developing and improving a complete system called the European Radiological Data Exchange Platform (EURDEP) to exchange real-time monitoring data to competent authorities and the public. We provide two complete datasets (air-concentration samples and gamma dose rates) for the recent radiological release of 106Ru in Europe, which occurred between the end of September and early October 2017.
Javier Elío, Giorgia Cinelli, Peter Bossew, José Luis Gutiérrez-Villanueva, Tore Tollefsen, Marc De Cort, Alessio Nogarotto, and Roberto Braga
Nat. Hazards Earth Syst. Sci., 19, 2451–2464, https://doi.org/10.5194/nhess-19-2451-2019, https://doi.org/10.5194/nhess-19-2451-2019, 2019
Short summary
Short summary
The first version of the Pan-European Indoor Radon Map is presented in this article. The map has been developed using summary statistics estimated from 1.2 million samples. It represents an average radon concentration per 10 km x 10 km grid cell under the assumption that there are dwellings in the grid cell. It is a major contribution to the understanding of the exposure to ionizing radiation of Europeans and a first step towards a European radon exposure and, in the future, radon dose map.
Ann R. Stavert, Simon O'Doherty, Kieran Stanley, Dickon Young, Alistair J. Manning, Mark F. Lunt, Christopher Rennick, and Tim Arnold
Atmos. Meas. Tech., 12, 4495–4518, https://doi.org/10.5194/amt-12-4495-2019, https://doi.org/10.5194/amt-12-4495-2019, 2019
Short summary
Short summary
Under the UK GAUGE project, two new greenhouse gas observation sites were established in the 2013/2014 winter at two telecommunications towers. A combination of spectroscopic and chromatographic instrumentation was used to measure CO2, CH4, CO, N2O and SF6. The advantages and disadvantages of two CRDS sample drying strategies, Nafion(R) and empirical water correction, were also examined.
Marco Sangiorgi, Miguel Angel Hernández Ceballos, Giorgia Iurlaro, Giorgia Cinelli, and Marc de Cort
Earth Syst. Sci. Data, 11, 589–601, https://doi.org/10.5194/essd-11-589-2019, https://doi.org/10.5194/essd-11-589-2019, 2019
Short summary
Short summary
REMdb was created in the aftermath of the Chernobyl accident (1986) by the European Commission. Since then it has been maintained with the aim to keep a historical record of the Chernobyl accident and to store the radioactivity monitoring data gathered through the national environmental monitoring programs of the European Union member states. To date, the total number of data records stored in REMdb exceeds 5 million, in this way providing a valuable archive for everyone.
Claudia Grossi, Felix R. Vogel, Roger Curcoll, Alba Àgueda, Arturo Vargas, Xavier Rodó, and Josep-Anton Morguí
Atmos. Chem. Phys., 18, 5847–5860, https://doi.org/10.5194/acp-18-5847-2018, https://doi.org/10.5194/acp-18-5847-2018, 2018
Short summary
Short summary
To gain a full picture of the Spanish (and European) GHG balance, understanding of CH4 emissions in different regions is a critical challenge, as is the improvement of bottom-up inventories for all European regions. This study uses, among other elements, GHG, meteorological and 222Rn tracer data from a Spanish region to understand the main causes of temporal variability of GHG mixing ratios. The study can offer new insights into regional emissions by identifying the impacts of changing sources.
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas Frank Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3027–3045, https://doi.org/10.5194/acp-18-3027-2018, https://doi.org/10.5194/acp-18-3027-2018, 2018
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas F. Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3047–3064, https://doi.org/10.5194/acp-18-3047-2018, https://doi.org/10.5194/acp-18-3047-2018, 2018
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
E. N. Koffi, P. Bergamaschi, U. Karstens, M. Krol, A. Segers, M. Schmidt, I. Levin, A. T. Vermeulen, R. E. Fisher, V. Kazan, H. Klein Baltink, D. Lowry, G. Manca, H. A. J. Meijer, J. Moncrieff, S. Pal, M. Ramonet, H. A. Scheeren, and A. G. Williams
Geosci. Model Dev., 9, 3137–3160, https://doi.org/10.5194/gmd-9-3137-2016, https://doi.org/10.5194/gmd-9-3137-2016, 2016
Short summary
Short summary
We evaluate the capability of the TM5 model to reproduce observations of the boundary layer dynamics and the associated variability of trace gases close to the surface, using 222Rn. Focusing on the European scale, we compare the TM5 boundary layer heights with observations from radiosondes, lidar, and ceilometer. Furthermore, we compare TM5 simulations of 222Rn activity concentrations, using a novel, process-based 222Rn flux map over Europe, with 222Rn harmonized measurements from 10 stations.
U. Karstens, C. Schwingshackl, D. Schmithüsen, and I. Levin
Atmos. Chem. Phys., 15, 12845–12865, https://doi.org/10.5194/acp-15-12845-2015, https://doi.org/10.5194/acp-15-12845-2015, 2015
Short summary
Short summary
Detailed 222Rn flux maps are a prerequisite for the use of radon in atmospheric transport studies. We present a high-resolution 222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. Spatial variations in 222Rn exhalation rates are determined by soil uranium content, water table depth and soil texture. Temporal variations are related to soil moisture variations as the diffusion in the soil depends on available air-filled pore space.
R. Locatelli, P. Bousquet, F. Hourdin, M. Saunois, A. Cozic, F. Couvreux, J.-Y. Grandpeix, M.-P. Lefebvre, C. Rio, P. Bergamaschi, S. D. Chambers, U. Karstens, V. Kazan, S. van der Laan, H. A. J. Meijer, J. Moncrieff, M. Ramonet, H. A. Scheeren, C. Schlosser, M. Schmidt, A. Vermeulen, and A. G. Williams
Geosci. Model Dev., 8, 129–150, https://doi.org/10.5194/gmd-8-129-2015, https://doi.org/10.5194/gmd-8-129-2015, 2015
Cited articles
Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V.,
Monfray, P., O'Doherty, S., Spain, T., and Jennings, S.: European greenhouse gas
emissions estimated from continuous atmospheric measurements and radon 222
at Mace Head, Ireland, J. Geophys. Res.-Atmos., 105, 1351–1366, https://doi.org/10.1029/1999JD900821, 2000.
Bossew P.: Radon priority areas – definition, estimation and uncertainty,
Nuclear Technology and Radiation Protection, 33, 286–292, https://doi.org/10.2298/NTRP180515011B, 2018.
Bossew, P., Cinelli, G., Ciotoli, G., Crowley, Q., Cort, M., Medina, J.,
Gruber, V., Petermann, E., and Tollefsen, T.: Development of a geogenic radon
hazard index – concept, history, experiences, Int. J. Environ. Res. Public
Health, 17, 4134, https://doi.org/10.3390/ijerph17114134, 2020.
Brunke, E.-G., Labuschagne, C., Parker, B., van der Spuy, D., and
Whittlestone, W.: Cape Point GAW Station 222Rn detector: factors affecting
sensitivity and accuracy, Atmos. Environ., 36, 2257–2262,
https://doi.org/10.1016/S1352-2310(02)00196-6, 2002.
Cardellini, F.: New experimental activity at ENEA INMRI radon laboratory,
WORKSHOP: The second radon-in-field international intercomparison for
passive measurement devices: dwellings and workplaces, Milano, Italy, https://www.airp-asso.it/wp-content/uploads/convegni/2017_interconfronto/day2/7 Francesco Cardellini.pdf (last access: 2 March 2022), 2017.
Cardellini, F., De Felice, P., and Pagliari, M.: Determination of blank
indication of active radon monitors, Appl. Radiat. Isot. 81, 242–247, 2013.
Chambers, S. D., Preunkert, S., Weller, R., Hong, S.-B., Humphries, R. S.,
Tositti, L., Angot, H., Legrand, M., Williams, A. G., Griffiths, A. D.,
Crawford, J., Simmons, J., Choi, T. J., Krummel, P. B., Molloy, S., Loh, Z.,
Galbally, I., Wilson, S., Magand, O., Sprovieri, F., Pirrone, N., and Dommergue,
A.: Characterizing Atmospheric Transport Pathways to Antarctica and the
Remote Southern Ocean Using Radon-222, Front. Earth Sci., 6,
https://doi.org/10.3389/feart.2018.00190, 2018.
Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., and De Cort, M.:
Digital version of the European Atlas of natural radiation,
J. Environ. Radioactiv.,
196, 240–252, https://doi.org/10.1016/j.jenvrad.2018.02.008,
2019.
Dörr, H., Kromer, B., Levin, I., Münnich, K. O., and Volpp, H.-J.: CO2
and radon 222 as tracers for atmospheric transport, J. Geophys. Res.-Oceans, 88, 1309–1313,
https://doi.org/10.1029/JC088iC02p01309, 1983.
Dubois, G.: An overview of radon surveys in Europe, Office for Official
Publication of the European Communities, Luxembourg, 172 pp., EUR 21892 EN,
ISBN 92-79-01066-2, 2005.
DURRIDGE Company Inc.: RAD 7 Electronic Radon Detector User Manual, RAD7 Manual, http://durridge.com (last access: 2 March 2022), 2021.
Friedmann, H.: Final results of the Austrian radon project, Health
Phys., 89, 339–348, https://doi.org/10.1097/01.HP.0000167228.18113.27, 2005.
Fialova, E., Otahal, P., Vosahlik, J., and Mazanova, M.: Equipment for Testing
Measuring Devices at a Low-Level Radon Activity Concentration, Int. J. Environ.
Res. Public Health, 17, 1904, https://doi.org/10.3390/ijerph17061904,
2020.
Griffiths, A. D., Chambers, S. D., Williams, A. G., and Werczynski, S.: Increasing the accuracy and temporal resolution of two-filter radon–222 measurements by correcting for the instrument response, Atmos. Meas. Tech., 9, 2689–2707, https://doi.org/10.5194/amt-9-2689-2016, 2016.
Grossi, C., Arnold, D., Adame, J. A., López-Coto, I., Bolívar, J. P.,
de la Morena, B. A., and Vargas, A.: Atmospheric 222Rn concentration and
source term at El Arenosillo 100 m meteorological tower in southwest Spain,
Radiat. Meas., 47, 149–162, https://doi.org/10.1016/j.radmeas.2011.11.006, 2012.
Grossi, C., Vogel, F. R., Morgui, J. A., Curcoll, R., Àgueda, A.,
Batet, O., Nofuentes, M., Occhipinti, P., Vargas, A., and Rodó, X.: First
estimation of CH4 fluxes using the 222Rn tracer method over the
central Iberian Peninsula, in Air Pollution XXII, WIT Trans. Ecol. Environ.,
183, 233–245, https://doi.org/10.2495/AIR140201, 2014.
Grossi, C., Vogel, F. R., Curcoll, R., Àgueda, A., Vargas, A., Rodó, X., and Morguí, J.-A.: Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer, Atmos. Chem. Phys., 18, 5847–5860, https://doi.org/10.5194/acp-18-5847-2018, 2018.
Grossi, C., Chambers, S. D., Llido, O., Vogel, F. R., Kazan, V., Capuana, A., Werczynski, S., Curcoll, R., Delmotte, M., Vargas, A., Morguí, J.-A., Levin, I., and Ramonet, M.: Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors, Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, 2020.
Karstens, U., Schwingshackl, C., Schmithüsen, D., and Levin, I.: A process-based 222radon flux map for Europe and its comparison to long-term observations, Atmos. Chem. Phys., 15, 12845–12865, https://doi.org/10.5194/acp-15-12845-2015, 2015.
Kemski, J., Siehl, A., Stegemann, R., and Valdivia-Manchego, M.: Mapping the
geogenic radon potential in Germany, Sci. Total Environ., 272, 217–230,
https://doi.org/10.1016/S0048-9697(01)00696-9, 2001.
Khanbabaee, B., Röttger, A., Behrens, R., Röttger, S., Feige, S.,
Hupe, O., Zutz, H., Toroi, P., Leonard, P., de la Fuente Rosales, L.,
Burgess, P., Gressier, V., Gutiérrez Villanueva, J.-L., Cruz
Suárez, R., and Arnold, D.: Support for a European Metrology Network on
Reliable Radiation Protection: Gaps in Radiation Protection and Related
Metrology, RAD Conference Proceedings, 5, 21–27, https://doi.org/10.21175/RadProc.2021.04, 2021.
Koffi, E. N., Bergamaschi, P., Karstens, U., Krol, M., Segers, A., Schmidt, M., Levin, I., Vermeulen, A. T., Fisher, R. E., Kazan, V., Klein Baltink, H., Lowry, D., Manca, G., Meijer, H. A. J., Moncrieff, J., Pal, S., Ramonet, M., Scheeren, H. A., and Williams, A. G.: Evaluation of the boundary layer dynamics of the TM5 model over Europe, Geosci. Model Dev., 9, 3137–3160, https://doi.org/10.5194/gmd-9-3137-2016, 2016.
Levin, I., Born, M., Cuntz, M., Langendörfer, U., Mantsch, S.,
Naegler, T., Schmidt, M., Varlagin, A., Verclas, S., and Wagenbach, D.:
Observations of atmospheric variability and soil exhalation rate of
Radon-222 at a Russian forest site: Technical approach and deployment for
boundary layer studies, Tellus B, 54, 462–475, 2002.
Levin, I., Hammer, S., Eichelmann, E., and Vogel, F.R.: Verification of
greenhouse gas emission reductions: the prospect of atmospheric monitoring
in the polluted areas, Philos. T. Roy. Soc. A, 369, 1906–1924,
https://doi.org/10.1098/rsta.2010.0249, 2011.
Levin, I., Karstens, U., Hammer, S., DellaColetta, J., Maier, F., and Gachkivskyi, M.: Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions – a case study for methane in Heidelberg, Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021, 2021.
Linzmaier, D., Röttger, A.: Development of a transfer standard for the measurement of low Rn-222 activity concentration in air, Appl. Radiat. Isot., 87, 306–309, https://doi.org/10.1016/j.apradiso.2013.11.076, 2014.
López-Coto, I., Mas, J. L., and Bolívar, J. P.: A 40-year
retrospective European radon flux inventory including climatological
variability, Atmos. Environ., 73, 22–33,
https://doi.org/10.1016/j.atmosenv.2013.02.043, 2013.
Mazed, D., Ciolini, R., Curzio, G., and Del Gratta, A.: A new active method for
continuous radon measurements based on a multiple cell proportional counter,
Nucl. Instr. Meth. Res. A, 582, 535–545, 2007.
Mertes, F., Röttger, S., and Röttger, A.: A new primary emanation standard for Radon-222, Appl. Radiat. Isot., 156, 108928, https://doi.org/10.1016/j.apradiso.2019.108928, 2020.
Mertes, F., Röttger, S., and Röttger, A: Approximate Sequential Bayesian Filtering to Estimate Rn-222 Emanation from Ra-226 Sources from Spectra,
Proceedings of the Conference Sensor and Measurement Science International, 256–257, ISBN 978-3-9819376-4-0,
https://doi.org/10.5162/SMSI2021/D3.3, 2021.
Mi.am Srl/Tecnavia SA – Radon
Detectors: RADON MAPPER Technical Specifications, prodotti-dosimetria-radon-mapper EN, http://miam.it (last access: 2 March 2022), 2019.
Neznal, M., Neznal, M., Matolín, M., Barnet, I., and Miksova, J.: The
new method for assessing the radon risk of building sites, Czech Geological
Survey Special Papers 16, Czech Geological Survey, Prague, 47 pp., https://www.radon-vos.cz/pdf/metodika.pdf (last access: 2 March 2022), 2004.
Olivié, D. J. L., van Velthoven, P. F. J., and Beljaars, A. C. M.: Evaluation of archived and off-line diagnosed vertical diffusion coefficients from ERA-40 with 222Rn simulations, Atmos. Chem. Phys., 4, 2313–2336, https://doi.org/10.5194/acp-4-2313-2004, 2004.
Pierre, S., Cassette, P., Sabot, B., Fréchou, C., Antohe, A., Barna, C.,
Blahušiak, P., Cardellini, F., Dersch, R., Honig, A., Juget, F.,
Krivošík, M., Luca, M., Maringer, F. J., Mertes, F., Röttger,
S., Sahagia, M., Slučiak, Stietka, M., Szűcs, L., and Teodorescu, C.:
International comparison of activity measurements of radon 222, EURAMET
Project no. 1475, EURAMET.RI(II)-S8.Rn-222, Metrologia, Volume 58,
Number 1A, https://www.bipm.org/documents/20126/48150641/EURAMET.RI(II)-S8.Rn-222.pdf/68464ff6-b2a7-f971-4d93-420086e932f0 (last access: 2 March 2022), 2021.
Polian, G., Lambert, G., Ardouin, B., and Jegou, A.: Long-range transport of
continental radon in subantarctic and Antarctic areas, Tellus, 388, 178–189, 1986.
Radulescu, I., Calin, M. R., Luca, A., Röttger, A., Grossi, C., Done, L., and
Ioan, M. R.: Inter-comparison of commercial continuous radon monitors
responses, NIM-A, 1021, 165927, https://doi.org/10.1016/j.nima.2021.165927, 2022.
Roessler, F.: AlphaGUARD DF User Manual EN Rev.E, Bertin-Instruments, https://www.bertin-instruments.com/wp-content/uploads/2016/09/Brochure_AlphaGUARD_2022_web.pdf (last access: 2 March 2022), 2020.
Röttger, A. and Honig, A.: Recent developments in radon metrology: new aspects in the calibration of radon, thoron and progeny devices, Radiat.
Prot. Dosim., 145, 260–266, https://doi.org/10.1093/rpd/ncr047, 2011.
Röttger, A. and Kessler, P.: Uncertainties and characteristic limits of
counting and spectrometric dosimetry systems, J. Environ. Radioact., 205–206,
48–54, https://doi.org/10.1016/j.jenvrad.2019.04.012, 2019.
Röttger, A., Veres, A., Sochor, V., Pinto, M., Derlacinski, M., Ioan, M.-R., Sabeta, A., Bernat, R., Adam-Guillermin, C., Gracia Alves, J. H., Glavič-Cindro, D., Bell, S., Wens, B., Persson, L., Živanović, M., and Nylund, R.: Metrology for radiation protection: a new European network in the foundation phase, Adv. Geosci., 57, 1–7, https://doi.org/10.5194/adgeo-57-1-2021, 2021.
SARAD GmbH: RTM2200 Info Sheet, Technical Data, EN 013, https://www.sarad.de/cms/media/docs/handbuch/Manual_RTM-RPM22xx_EQF32xx_A2M4000_EN_24-11-16.pdf, last access: 2 March 2022.
Sangiorgi, M., Hernández-Ceballos, M. A., Jackson, K., Cinelli, G., Bogucarskis, K., De Felice, L., Patrascu, A., and De Cort, M.: The European Radiological Data Exchange Platform (EURDEP): 25 years of monitoring data exchange, Earth Syst. Sci. Data, 12, 109–118, https://doi.org/10.5194/essd-12-109-2020, 2020.
Schmithüsen, D., Chambers, S., Fischer, B., Gilge, S., Hatakka, J., Kazan, V., Neubert, R., Paatero, J., Ramonet, M., Schlosser, C., Schmid, S., Vermeulen, A., and Levin, I.: A European-wide 222radon and 222radon progeny comparison study, Atmos. Meas. Tech., 10, 1299–1312, https://doi.org/10.5194/amt-10-1299-2017, 2017.
Southern Scientific: AB7 – Radon Monitor, Specifications, © 2022 LabLogic Systems Ltd,
https://www.southernscientific.co.uk/products-by-manufacturer/pylon/ab6?source=1581#specifications, last access: 2 March 2022.
Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data Atmos. Environ., 32, 4245–4264,
https://doi.org/10.1016/s1352-2310(98)00184-8,
1998.
Streil, T, Oeser, V., and Sabol, J.: RTM 2200 Radon/Thoron monitor – ”System in
a box” for complex sampling procedures and multi parameter analysis,
PowerPoint-Präsentation, http://elradon.com (last access: 2 March 2022), 2011.
Szegvary, T., Conen, F., and Ciais, P.: European 222Rn inventory for
applied atmospheric studies, Atmos. Environ., 43,
1536–1539, https://doi.org/10.1016/j.atmosenv.2008.11.025, 2009.
Tesla: Radon Monitor RADIM 3AT Technical Specifications & Operation Manual,
v1-2018, navod radim en, http://tesla.cz (last access: 2 March 2022), 2018.
Tollefsen, T., De Cort, M., Cinelli, G., Gruber, V., and Bossew, P.: European atlas of natural radiation, Publication
Office of the European Union, Luxembourg, https://publications.jrc.ec.europa.eu/repository/handle/JRC106967 (last access: 2 March 2022), 2019.
Van Der Laan, S., Karstens, U., Neubert, R. E. M., Van Der Laan-Luijkx, I., and
Meijer, H. A. J.: Observation-based estimates of fossil fuel-derived CO2
emissions in the Netherlands using 14C, CO and 222Radon, Tellus B,
62, 389–402, https://doi.org/10.1111/j.1600-0889.2010.00493.x, 2010.
Vargas, A., Arnold, D., Adame, J. A., Grossi, C.,
Hernández-Ceballos, M. A., and Bolívar, J. P.: Analysis of the vertical
radon structure at the spanish “El arenosillo” tower station, J. Environ.
Radioact., 139, 1–17,
https://doi.org/10.1016/j.jenvrad.2014.09.018, 2015.
Vogel, F. R., Ishizawa, M., Chan, E., Chan, D., Hammer, S., Levin, I., and
Worthy, D. E. J.: Regional non-CO2 greenhouse gas fluxes inferred from
atmospheric measurements in Ontario, Canada, J. Integr. Environ. Sci., 9,
41–55, https://doi.org/10.1080/1943815X.2012.691884, 2012.
Wada, A., Matsueda, H., Murayama, S., Taguchi, S., Hirao, S., Yamazawa, H.,
Moriizumi, J., Tsuboi, K., Niwa, Y., and Sawa, Y.: Quantification of emission
estimates of CO2, CH4 and CO for East Asia derived from
atmospheric radon-222 measurements over the western North Pacific, Tellus B,
65, 18037, https://doi.org/10.3402/tellusb.v65i0.18037, 2013.
Whittlestone, S. and Zahorowski, W.: Baseline radon detectors for shipboard
use: Development and deployment in the First Aerosol Characterization
Experiment (ACE 1), J. Geophys. Res., 103, 16743–16751, https://doi.org/10.1029/98JD00687, 1998.
Short summary
Radon gas is the largest source of public exposure to naturally occurring radioactivity. Radon can also be used, as a tracer to improve indirectly the estimates of greenhouse gases important for supporting successful GHG mitigation strategies.
Both climate and radiation protection research communities need improved traceable low-level atmospheric radon measurements. The EMPIR project 19ENV01 traceRadon started to provide the necessary measurement infrastructure and transfer standards.
Radon gas is the largest source of public exposure to naturally occurring radioactivity. Radon...