Characterization of groundwater recharge through tritium measurements
ENEA, Italian National Agency for New Technologies, Energy and
Sustainable Economic Development Fusion and Technology for Nuclear Safety
and Security Department Nuclear Safety, Security and Sustainability Division, via Martiri di Monte Sole 4, 40129 Bologna, Italy
Antonietta Rizzo
ENEA, Italian National Agency for New Technologies, Energy and
Sustainable Economic Development Fusion and Technology for Nuclear Safety
and Security Department Nuclear Safety, Security and Sustainability Division, via Martiri di Monte Sole 4, 40129 Bologna, Italy
Stefano Salvi
ENEA, Italian National Agency for New Technologies, Energy and
Sustainable Economic Development Fusion and Technology for Nuclear Safety
and Security Department Nuclear Safety, Security and Sustainability Division, via Martiri di Monte Sole 4, 40129 Bologna, Italy
Alessandro Pozzobon
ARPA Veneto, Regional Agency for Environmental Protection and
Prevention of the Veneto, ARPAV Department of Environmental Quality,
Internal Water Monitoring Organizational Unit, via Ospedale Civile 24,
35121 Padova, Italy
Elena Marrocchino
Department of Chemistry, Pharmaceutical and Agricultural Sciences,
University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
Carmela Vaccaro
Department of Chemistry, Pharmaceutical and Agricultural Sciences,
University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
OGS, National Institute of Oceanography and Applied Geophysics, Borgo
Grotta Gigante 42/c, 34010 Sgonico (TS), Italy
Cited articles
Abdullah, T. O., Ali, S. S., Al-Ansari, N. A., and Knutsson, S.: Possibility
of Groundwater Pollution in Halabja Saidsadiq Hydrogeological Basin, Iraq
Using Modified DRASTIC Model Based on AHP and Tritium Isotopes, Geosciences,
8, 236, https://doi.org/10.3390/geosciences8070236, 2018.
Ala-aho, P., Soulsby, C., Pokrovsky, O. S., Kirpotin, S. N., Karlsson, J.,
Serikova, S., Vorobyev, S. N., Manasypov, R. M., Loiko, S., and Tetzlaff, D.:
Using stable isotopes to assess surface water source dynamics and
hydrological connectivity in a high-latitude wetland and permafrost
influenced landscape, J. Hydrol., 556, 279–293, https://doi.org/10.1016/j.jhydrol.2017.11.024, 2018.
Álvarez-Cobelas, M., Sánchez-Carrillo, S., Cirujano, S., and Angeler,
D. G.: A Story of the Wetland Water Quality Deterioration: Salinization,
Pollution, Eutrophication and Siltation, in: Ecology of Threatened Semi-Arid Wetlands. Wetlands:
Ecology, Conservation and Management, 2, edited by: Sánchez-Carrillo, S. and
Angeler, D., Springer, Dordrecht, https://doi.org/10.1007/978-90-481-9181-9_5, 2010.
APHA: Standard Methods for Water and Wastewater Examination, 17th edn., edited by: Greenberg, A. E., Clescerl, L. S., and Eaton, A. D.,
American Public Health Association, Washington, D.C., USA, 1992.
Area Tecnico Scientifica – Servizio Acque Interne: Le acque sotterranee
della pianura veneta – I risultati del Progetto SAMPAS, Orientambiente,
1–104, 2008.
ARPAV: Qualità delle acque sotterranee 2019, ARPA VENETO, 2020.
ARPAV report: https://www.arpa.veneto.it/dati-ambientali/open-data/idrosfera/acque-sotterranee/acque-sotterranee-qualita-chimica (last access: 15 September 2021), 2011, 2012, 2013, 2014.
ARPAV report: Monitoraggio delle acque sotterranee in alcuni comuni della
provincia di Treviso per il controllo dell'inquinamento da mercurio (Hg),
ARPAV, Unità Operativa Qualità acque Interne, edited by: Moretto, C. G. and Boscolo, C., 2018.
Baruffi, F., Cisotto, A., Cimolino, A., Ferri, M., Monego, M., Norbiato, D.,
Cappelletto, M., Bisaglia, M., Pretner, A., Galli, A., Scarinci, A.,
Marsala, V., Panelli, C., Gualdi, S., Bucchignani, E., Torresan, S., Pasini,
S., Critto, A., and Marcomini, A.: Climate change impact assessment on Veneto
and Friuli plain groundwater. Part I: An integrated modelling approach for
hazard scenario construction, Sci. Total Environ., 440, 154–166, https://doi.org/10.1016/j.scitotenv.2012.07.070, 2012.
Bondesan, A. and Meneghel, M.: Geomorfologia della provincia di Venezia,
Padova, Esedra, 516, 2004.
Boral, S., Sen, I. S., Ghoshal, D., Peucker-Ehrenbrink, B., and Hemingway,
J.: Stable water isotope modeling reveals Spatio-temporal variability of
glacier meltwater contributions to Ganges River headwaters, J. Hydrol., 577,
123983, https://doi.org/10.1016/j.jhydrol.2019.123983, 2019.
Boschetti, T., Cifuentes, J., Iacumin, P., and Selmo, E.: Local Meteoric
Water Line of Northern Chile (18∘ S–30∘ S): An
Application of Error-in-Variables Regression to the Oxygen and Hydrogen
Stable Isotope Ratio of Precipitation, Water, 11, 791, https://doi.org/10.3390/w11040791, 2019.
Bronić, K. I. and Barešić, J.: Application of Stable Isotopes
and Tritium in Hydrology, Water, 13, 430, https://doi.org/10.3390/w13040430, 2021.
Bryan, E., Meredith, K. T., Baker, A., Post, V. E. A., and Andersen, M. S.:
Island groundwater resources, impacts of abstraction and a drying climate:
Rottnest Island, Western Australia, J. Hydrol., 542, 704–718, https://doi.org/10.1051/e3sconf/20185400022, 2016.
Carraro, A., Fabbri, P., Giaretta, A., Peruzzo, L., Tateo, F., and Tellini,
F.: Effects of redox conditions on the control of arsenic mobility in
shallow alluvial aquifers on the Venetian Plain (Italy), Sci. Total
Environ., 532, 581–594, https://doi.org/10.1016/j.scitotenv.2015.06.003, 2015.
Cartwright, I., Cendón, D., Currell, M., and Meredith, K.: A review of
radioactive isotopes and other residence time tracers in understanding
groundwater recharge: Possibilities, challenges, and limitations, J.
Hydrol., 555, 797–811, https://doi.org/10.1016/j.jhydrol.2017.10.053, 2017.
Cauquoin, A., Jean-Baptiste, P., Risi, C., Fourré, É., Stenni, B.,
and Landais A.: The global distribution of natural tritium in precipitation
simulated with an Atmospheric General Circulation Model and comparison with
observations, Earth Planet. Sci. Lett., 427, 160–170, https://doi.org/10.1016/j.epsl.2015.06.043, 2015.
Chen, K., Meng, Y., Liu, G., Xia, C., Zhou, J., and Li, H.: Identifying
hydrological conditions of the Pihe River catchment in the Chengdu Plain
based on spatio-temporal distribution of 2H and 18O, J. Radioanal. Nuc.
Chem., 324, 1125–1140, https://doi.org/10.1007/s10967-020-07163-z, 2020.
Clark, I. and Fritz, P.: Environmental Isotopes in Hydrogeology, Lewis Book,
1st edn., ISBN 1-56670-249-6, 1997.
Cook, P. G., Rodellas, V., and Stieglitz, T. C.: Quantifying surface water,
porewater, and groundwater interactions using tracers: Tracer fluxes, water
fluxes, and end-member concentrations, Water Resour. Res., 54,
2452–2465, https://doi.org/10.1002/2017WR021780, 2018.
Craig, H. and Gordon, L. I.: Deuterium and oxygen-18 variations in the ocean
and the marine atmosphere, in: Stable Isotopes in Oceanographic Studies and
Palaeotemperatures, edited by: Tongiorgi, E., Laboratorio di geologia nucleare,
Spoleto, Italy, 9–130, 1965.
Crawford, J., Hughes, C. E., and Lykoudis, S.: Alternative least squares
methods for determining the meteoric water line, demonstrated using GNIP
data, J. Hydrol., 519, 2331–2340, https://doi.org/10.1016/j.jhydrol.2014.10.033, 2014.
Directive 2000/60/EC: Framework for Community action in the field of water
policy, Official Journal, L327, 0001–0073, 2020.
Directive 2013/51/EURATOM: Requirements for the protection of the health of
the general public with regard to radioactive substances in water intended
for human consumption, http://data.europa.eu/eli/dir/2013/51/oj (last access: 15 September 2021), 2013.
DOE Handobook: Tritium handling and safe storage, U.S. Department of Energy,
Washington, D.C., 20585, 2008.
Ehhalt, D. H., Rohrer, F., Schauffler, S., and Pollock, W.: Tritiated water
vapor in the stratosphere: vertical profiles and residence time, J. Geophys.
Res., 107, 4757, https://doi.org/10.1029/2001JD001343, 2002.
Evaristo, J., McDonnell, J. J., and Clemens, J.: Plant source water
apportionment using stable isotopes: A comparison of simple linear,
two-compartment mixing model approaches, Hydrol. Process., 31, 3750–3758,
https://doi.org/10.1002/hyp.11233, 2017.
Ficco, K. K. and Sasowsky, I. D.: An interdisciplinary framework for the
protection of karst aquifers, Environ. Sci. Policy, 89, 41–48, https://doi.org/10.1016/j.envsci.2018.07.005, 2018.
Foraboschi, P.: Specific structural mechanics that underpinned the
construction of Venice and dictated venetian architecture, Eng. Fail. Anal.,
78, 169–195, https://doi.org/10.1016/j.engfailanal.2017.03.004,
2017.
Fourré, E., Jean-Baptiste, P., Dapoigny, A., Baumier, D., Petit, J. R.,
and Jouzel, J.: Past and recent tritium levels in Arctic and Antarctic polar
caps, Earth Planet. Sci. Lett., 245, 56–64, https://doi.org/10.1016/j.epsl.2006.03.003, 2006.
Gattacceca, J. C., Vallet-Coulomb, C., Mayer, A., Claude, C., Radakovitch,
O., Conchetto, E., and Hamelin, B.: Isotopic and geochemical characterization
of salinization in the shallow aquifers of a reclaimed subsiding zone: The
southern Venice Lagoon coastland, J. Hydrol., 378, 46–61, https://doi.org/10.1016/j.jhydrol.2009.09.005, 2009.
Gibson, J. J., Holmes, T., Stadnyk, T. A., Birks, S. J., Eby, P., and
Pietrniro, A.: 18O and 2H in streamflow across Canada, J. Hydrol., 32,
100754, https://doi.org/10.1016/j.ejrh.2020.100754, 2020.
Giustini, F., Brilli, M., and Patera, A.: Mapping oxygen stable isotopes of
precipitation in Italy, J. Hydrol. Reg. Stud., 8, 162–181, https://doi.org/10.1016/j.ejrh.2016.04.001, 2016.
Glibert, P. M., Middelburg, J. J., McClelland, J. W., and Jake Vander Zanden,
M.: Stable isotope tracers: Enriching our perspectives and questions on
sources, fates, rates, and pathways of major elements in aquatic systems,
Limnol. Oceanogr., 64, 950–981, https://doi.org/10.1002/lno.11087, 2019.
Guo, C., Shi, J., Zhang, Z., and Zhang, F.: Using tritium and radiocarbon to
determine groundwater age and delineate the flow regime in the Taiyuan
Basin, China, Arab. J. Geosci., 12, 185, https://doi.org/10.1007/s12517-019-4371-7, 2019.
IAEA/WMO: Global Network of Isotopes in Precipitation, The GNIP Database,
IAEA, http://www.iaea.org/water (last access: 15 September 2021), 2019.
ISO 9698: Water quality – Tritium – Test method using liquid scintillation
counting, BSI Standard Publications, 2019.
Jasechko, S.: Partitioning young and old groundwater with geochemical
tracers, Chem. Geol., 427, 35–42, https://doi.org/10.1016/j.chemgeo.2016.02.012, 2016.
Jasechko, S., Perrone, D., Befus, K., Cardenas, M. B., Ferguson, G., Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., Wada, Y., and Kirchner, J. W.: Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination, Nat. Geosci., 10, 425–429, https://doi.org/10.1038/ngeo2943, 2017.
Jerbi, H., Hamdi, M., Snoussi, M., Abdelmalek, M. B., Jnoub, H. and
Tarhouni, J.: Usefulness of historical measurements of tritium content in
groundwater for recharge assessment in semi-arid regions: application to
several aquifers in central Tunisia, Hydrogeol. J., 27, 1645–1660,
https://doi.org/10.1007/s10040-019-01937-w, 2019.
Jurgens, B. C., Böhlke, J. K., and Eberts, S. M.: TracerLPM (Version 1): An
Excel® Workbook for Interpreting Groundwater Age Distributions
from Environmental Tracer Data, USGS, 2012.
Kaseke, K. F., Wang, L., and Seely, M. K.: Nonrainfall water origins and
formation mechanisms, Sci. Adv., 3, e1603131, https://doi.org/10.1126/sciadv.1603131, 2017.
Karmegam, U., Chidambaram, S., Prasanna, M. V., Sasidhar, P., Manikandan,
S., Johnsonbabu, G., Dheivanayaki, V., Paramaguru, P., Manivannan, R.,
Srinivasamoorthy, K., and Anandhan, P.: A study on the mixing proportion in
groundwater samples by using Piper diagram and Phreeqc model, Chin. J.
Geochem., 30, 490, https://doi.org/10.1007/s11631-011-0533-3,
2011.
Kaufman, S. and Libby, W. F.: The natural distribution of tritium, Phys.
Rev., 93, 1337–1344, https://doi.org/10.1103/PhysRev.93.1337,
1954.
Kim, H., Cho, S. H., Lee, D., Jung, Y. Y., Kim, Y. H., Koh, D. C., and Lee, J.:
Influence of pre-event water on streamflow in a granitic watershed using
hydrograph separation, Environ. Earth Sci., 76, 82, https://doi.org/10.1007/s12665-017-6402-6, 2017.
Legislative Decree 152: Norme in materia ambientale, Gazzetta Ufficiale, 88, 2006.
Legislative Decree 212: Indicazioni operative a carattere
tecnico-scientifico, ai sensi dell'articolo 8 del decreto legislativo 15
febbraio 2016, Gazzetta Ufficiale, 28, 2017.
Libera, N. D., Fabbri, P., Mason, L., Piccinini, L., and Pola, M.:
Geostatistics as a tool to improve the natural background level denition: An
application in groundwater, Sci. Total Environ., 598, 330–340, https://doi.org/10.1016/j.scitotenv.2017.04.018, 217.
Lindsey, B. D., Jurgens, B. C., and Belitz, K.: Tritium as an indicator of
modern, mixed, and premodern groundwater age, Bulletin: Scientific
Investigations Report – US Geological Survey 2019 No. 2019-5090 pp.vii + 18
pp., ref. 49, 2019.
Longinelli, A. and Selmo, E.: Isotopic composition of precipitation in
Italy: a first overall map, J. Hydrol., 270, 75–88, https://doi.org/10.1016/S0022-1694(02)00281-0, 2003.
M'Nassri, S., Lucas, Y., Schäfer, G., Dridi, L., and Majdoub, R.: Coupled
hydrogeochemical modelling using KIRMAT to assess water-rock interaction in
a saline aquifer in central-eastern Tunisia, Appl. Geochemistry, 102,
229–242, https://doi.org/10.1016/j.apgeochem.2019.01.018, 2019.
MacMahon, D.: Half-life evaluations for 3H, 90Sr, and 90Y, Appl. Radiat.
Isot., 64, 1417–1419, https://doi.org/10.1016/j.apradiso.2006.02.072, 2006.
Mahlangu, S., Lorentz, S., Diamond, R., and Dippenaar, M.: Surface
water-groundwater interaction using tritium and stable water isotopes: A
case study of Middelburg, South Africa, J. Afr. Earth Sci., 171, 103886,
https://doi.org/10.1016/j.jafrearsci.2020.103886, 2020.
Marchina, C., Natali, C., and Bianchini, G.: The Po River Water Isotopes
during the Drought Condition of the Year 2017, Water, 11, 150, https://doi.org/10.3390/w11010150, 2019.
Marchina, C., Lencioni, V., Paoli, F., Rizzo, M., and Bianchini, G.:
Headwaters' Isotopic Signature as a Tracer of Stream Origins and Climatic
Anomalies: Evidence from the Italian Alps in Summer 2018, Water, 12, 390,
https://doi.org/10.3390/w12020390, 2020.
Mayer, A., Sültenfuß, J., Travi, Y., Rebeix, R., Purtschert, R.,
Claude, C., Le Gal La Salle, C., Miche, H., and Conchetto, E.: A multi-tracer
study of groundwater origin and transit-time in the aquifers of the Venice
region (Italy), Appl. Geochem., 50, 177–198, https://doi.org/10.1016/j.apgeochem.2013.10.009, 2014.
Mazzola, M.: Idrogeologia e carta freatimetrica della Provincia di Treviso,
Provincia di Treviso, Assessorato alle politiche per l'Ambiente, 2003.
McCallum, J. L., Engdahl, N. B., Ginn, T. R., and Cook, P. G.: Nonparametric
estimation of groundwater residence time distributions: What can
environmental tracer data tell us about groundwater residence time?, Water
Resour. Res., 50, 2022–2038, https://doi.org/10.1002/2013WR014974, 2014.
McCallum, J. L., Cook, P. G., Simmons, C. T.: Limitations of the Use of
Environmental Tracers to Infer Groundwater Age, Groundwater, 53, 56–70,
https://doi.org/10.1111/gwat.12237, 2015.
Mello, R. S., Luna, A. S., Ferreira, A. A., Tonietto, G. B., Bittencourt, I.,
and Godoy J. M. O.: Development and validation of an analytical methodology
for the determination of δ2H and δ18O in formation water
based on Laser-Based infrared absorption spectroscopy, Microchem. J., 155,
104678, https://doi.org/10.1016/j.microc.2020.104678, 2020.
Morgenstern, U., Stewart, M. K., and Stenger, R.: Dating of streamwater using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow, Hydrol. Earth Syst. Sci., 14, 2289–2301, https://doi.org/10.5194/hess-14-2289-2010, 2010.
Morgenstern, U., Daughney, C. J., Leonard, G., Gordon, D., Donath, F. M., and Reeves, R.: Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand, Hydrol. Earth Syst. Sci., 19, 803–822, https://doi.org/10.5194/hess-19-803-2015, 2015.
Nir, A.: On the interpretation of tritium `age' measurements of groundwater,
J. Geophys. Res., 69, 2589–2595, https://doi.org/10.1029/JZ069i012p02589, 1964.
Paine, J. G.: Determining salinization extent, identifying salinity sources,
and estimating chloride mass using surface, borehole, and airborne
electromagnetic induction methods, Water Resour. Res., 39, 1059, https://doi.org/10.1029/2001WR000710, 2003.
Paulsson, O. and Widerlund, A.: Pit lake oxygen and hydrogen isotopic
composition in subarctic Sweden: A comparison to the local meteoric water
line, Appl. Geochem., 118, 104611, https://doi.org/10.1016/j.apgeochem.2020.104611, 2020.
Pradinaud, C., Northey, S., Amor, B., Bare, J., Benini, L., Berger, M.,
Boulay, A. M., Junqua, G., Lathuillière, M. J., Margni, m., Motoshita,
M., Niblick, B., Payen, S., Pfister, S., Quinteiro, P., Sonderegger, T., and
Rosenbaum, R. K.: Defining freshwater as a natural resource: a framework
linking water use to the area of protection natural resources, Int. J. Life
Cycle Assess. 24, 960–974, https://doi.org/10.1007/s11367-018-1543-8, 2019.
Rahal, O., Gouaidia, L., Fidelibus, M. D., Marchina, C., Natali, C.,
and Bianchini, G.: Hydrogeological and geochemical characterization of
groundwater in the F'Kirina plain (eastern Algeria), Appl. Geochem., 130,
104983, https://doi.org/10.1016/j.apgeochem.2021.104983, 2021.
Ramaroson, V., Rakotomalala, C. U., Rajaobelison, J., Fareze, L. P.,
Razafitsalama, F. A., and Rasolofonirina, M.: Tritium as tracer of
groundwater pollution extension: case study of Andralanitra landfill site,
Antananarivo–Madagascar, Appl. Water Sci., 8, 57, https://doi.org/10.1007/s13201-018-0695-9, 2018.
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: Tritium in the global
atmosphere: distribution, patterns and recent trends, J. Phys. G-Nucl.
Part. Phys., 17, S523–S536, https://doi.org/10.1088/0954-3899/17/S/053, 1991.
Saccon, P., Leis, A., Marca, A., Kaiser, J., Campisi, L., Böttcher, M.
E., Savarino, J., Escher, P., Eisenhauer, A., and Erbland, J.: Multi-isotope
approach for the identification and characterisation of nitrate pollution
sources in the Marano lagoon (Italy) and parts of its catchment area, Appl.
Geochem., 34, 75–89, https://doi.org/10.1016/j.apgeochem.2013.02.007, 2013.
Schmieder, J., Garvelmann, J., Marke, T., and Strasser, U.: Spatiotemporal
tracer variability in the glacier melt end-member - How does it affect
hydrograph separation results?, Hydrol. Process., 32, 1828–1843, https://doi.org/10.1002/hyp.11628, 2018.
Silva, A. and Cota, S.: Groundwater age dating using single and
time-series data of environmental tritium in the Moeda Synclyne,
Quadrilátero Ferrífero, Minas Gerais, Brazil, J. South Am. Earth
Sci., 107, 103009, https://doi.org/10.1016/j.jsames.2020.103009, 2020.
Suckow, A.: The age of groundwater – Definitions, models and why we do not
need this term, Appl. Geochem., 50, 222–230, https://doi.org/10.1016/j.apgeochem.2014.04.016, 2014.
Tao, Z., Li, M., Si, B., and Pratt, D.: Rainfall intensity affects runoff
responses in a semi-arid catchment, Hydrol. Process., 35, e14100,
https://doi.org/10.1002/hyp.14100, 2021.
Tazioli, A.: Experimental methods for river discharge measurements:
comparison among tracers and current meter, Hydrol. Sci. J., 56, 1314–1324,
https://doi.org/10.1080/02626667.2011.607822, 2011.
Tazioli, A., Boschi, G., and Carlini, A.: Monitoraggio dell'inquinamento da
discariche: metodi isotopici per individuare la presenza di contaminazione
delle acque sotterranee, Giorn. Geol. Appl., 2, 130–136, https://doi.org/10.1474/GGA.2005-02.0-19.0045, 2002.
UNSCEAR: Sources and Effects of Ionizing Radiation: Sources, United Nations
Publications, 2000.
UNSCEAR: Sources and Effects of Ionizing Radiation: Sources, United Nations
Publications, 2016.
Walter, J., Chesnaux, R., Cloutier, V., and Gaboury, D.: The influence of
water/rock − water/clay interactions and mixing in the salinization
processes of groundwater, J. Hydrol. Reg. Stud., 13, 168–188, https://doi.org/10.1016/j.ejrh.2017.07.004, 2017.
Wang, S., Zhang, M., Hughes, C. E., Crawford, J., Wang, G., Chen, F., Du, M.,
Qiu, X., and Zhou, S.: Meteoric water lines in arid Central Asia using
event-based and monthly data, J. Hydrol., 562, 435–445, https://doi.org/10.1016/j.jhydrol.2018.05.034, 2018.
Xia, C., Liu, G., Meng, Y., Wang, Z., and Zhang, X.: Impact of human
activities on urban river system and its implication for water-environment
risks: an isotope-based investigation in Chengdu, China, Hum. Ecol. Risk
Assess., 27, 1416–1439, https://doi.org/10.1080/10807039.2020.1848416, 2020.
Yang, J., Dudley, B. D., Montgomery, K., and Hodgetts, W.: Characterizing
spatial and temporal variation in 18O and 2H content of New Zealand river
water for better understanding of hydrologic processes, Hydrol. Process.,
34, 5474–5488, https://doi.org/10.1002/hyp.13962, 2020.
Zhao, M., Hu, Y., Zeng, C., Liu, Z., Yang, R., and Chen, B.: Effects of land cover on variations in stable hydrogen and oxygen isotopes in karst groundwater: A comparative study of three karst catchments in Guizhou Province, Southwest China, J. Hydrol., 565, 374–385, https://doi.org/10.1016/j.jhydrol.2018.08.037, 2018.
Zhou, J., Liu, G., Meng, Y., Xia, C. C., Chen, K., and Chen, Y.: Using stable
isotopes as tracer to investigate hydrological condition and estimate water
residence time in a plain region, Chengdu, China, Sci. Rep.-UK, 11, 2812,
https://doi.org/10.1038/s41598-021-82349-3, 2021.
Short summary
Tritium concentration analyses were performed on groundwater samples collected in wells in the south part of Treviso city, to correlated the presence of tritium with the young age of the water recharge.
The results show strong differences in recharge by recent rainwater which reflect the variation in permeability of the sediments.
The aquifer analyzed was vulnerable to prolonged drought periods which could produce a worsening of water quality, consequently limiting water availability.
Tritium concentration analyses were performed on groundwater samples collected in wells in the...