Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine, A. D.,
Ashbolt, N. J., and Santo Domingo, J. W.: Functional microbial diversity
explains groundwater chemistry in a pristine aquifer, BMC Microbiol., 13,
146, https://doi.org/10.1186/1471-2180-13-146, 2013.
Gantner, S., Andersson, A. F., Alonso-Sáez, L., and Bertilsson, S.:
Novel primers for 16S rRNA-based archaeal community analyses in
environmental samples, J. Microbiol. Meth., 84, 12–18,
https://doi.org/10.1016/j.mimet.2010.10.001, 2011.
Grady, E. N., MacDonald, J., Liu, L., Richman, A., and Yuan, Z.-C.: Current
knowledge and perspectives of Paenibacillus: a
review, Microb. Cell Fact., 15, 203, https://doi.org/10.1186/s12934-016-0603-7, 2016.
Hamilton-Brehm, S. D., Stewart, L. E., Zavarin, M., Caldwell, M., Lawson, P.
A., Onstott, T. C., Grzymski, J., Neveux, I., Lollar, B. S., Russell, C. E.,
and Moser, D. P.: Thermoanaerosceptrum fracticalcis gen. nov. sp. nov., a
Novel Fumarate-Fermenting Microorganism From a Deep Fractured Carbonate
Aquifer of the US Great Basin, Front. Microbiol., 10, 2224,
https://doi.org/10.3389/fmicb.2019.02224, 2019.
Harris, K.: Biodegradation and testing of scale
inhibitors, Chem. Eng.-New York, 4, 49–53, 2011.
Hasson, D., Shemer, H., and Sher, A.: State of the Art of Friendly “Green”
Scale Control Inhibitors: A Review Article, Ind. Eng. Chem. Res., 50,
7601–7607, https://doi.org/10.1021/ie200370v, 2011.
Henning, H.-M. and Palzer, A.: A comprehensive model for the German
electricity and heat sector in a future energy system with a dominant
contribution from renewable energy technologies – Part I: Methodology, Renew. Sust. Energ. Rev., 30, 1003–1018,
https://doi.org/10.1016/j.rser.2013.09.012, 2014.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M.,
and Glöckner, F. O.: Evaluation of general 16S ribosomal RNA gene PCR
primers for classical and next-generation sequencing-based diversity
studies, Nucleic Acids Res., 41, e1, https://doi.org/10.1093/nar/gks808, 2013.
Lee, L. L., Crosby, J. R., Rubinstein, G. M., Laemthong, T., Bing, R. G.,
Straub, C. T., Adams, M. W. W., and Kelly, R. M.: The biology and
biotechnology of the genus Caldicellulosiruptor: recent developments in
“Caldi World”, Extremophiles, 24, 1–15, https://doi.org/10.1007/s00792-019-01116-5, 2020.
Lerm, S., Kleyböcker, A., and Würdemann, H.: GFZ Endbericht zum Verbundvorhaben Thermo-Inhibitor (Anwendung von verschiedenen Inhibitoren zur Vermeidung von Ausfällungen und Korrosion in Tiefengrundwassersystemen im Molassebecken und Norddeutschen Becken) Teilprojekt II Einfluss von Inhibitoren auf Mikroorganismen, unter besonderer Berücksichtigung von Scaling und Korrosion verursachender Organismen, GFZ Helmholtz Zentrum Potsdam, Potsdam, Germany, https://doi.org/10.2314/GBV:861905024, 2015 (in German).
Moeck, I. and Kuckelkorn, J.: Tiefengeothermie als Grundlastwärmequelle
in der Metropolregion München, Forsch. Wärmewende, Beiträge
FVEE-Jahrestagung, 3–4 November 2015, Berlin, Germany, 91–93, 2015.
Nadkarni, M. A., Martin, F. E., Jacques, N. A., and Hunter, N.:
Determination of bacterial load by real-time PCR using a broad-range
(universal) probe and primers set, Microbiology
+, 148,
257–266, https://doi.org/10.1099/00221287-148-1-257, 2002.
Oren, A.: The Family Methanobacteriaceae, in: The Prokaryotes – Other major lineages of Bacteria and the Archaea, a handbook on the biology of bacteria, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer, Berlin, Heidelberg, Germany, 165–193, https://doi.org/10.1007/978-3-642-38954-2_411, 2014.
Øvreås, L., Forney, L., Daae, F. L., and Torsvik, V.: Distribution of
bacterioplankton in meromictic Lake Saelenvannet, as determined by
denaturing gradient gel electrophoresis of PCR-amplified gene fragments
coding for 16S rRNA, Appl. Environ. Microb., 63, 3367–3373,
https://doi.org/10.1128/AEM.63.9.3367-3373.1997, 1997.
Quince, C., Lanzen, A., Davenport, R. J., and Turnbaugh, P. J.: Removing Noise From Pyrosequenced Amplicons, BMC Bioinformatics, 12, 38,
https://doi.org/10.1186/1471-2105-12-38, 2011.
Rainey, F. A., Donnison, A. M., Janssen, P. H., Saul, D., Rodrigo, A.,
Bergquist, P. L., Daniel, R. M., Stackebrandt, E., and Morgan, H. W.:
Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: An
obligately anaerobic, extremely thermophilic, cellulolytic bacterium,
FEMS Microbiol. Lett., 120, 263–266, 1994.
Sacchi, C. T., Whitney, A. M., Mayer, L. W., Morey, R., Steigerwalt, A.,
Boras, A., Weyant, R. S., and Popovic, T.: Sequencing of 16S rRNA gene: a
rapid tool for identification of Bacillus anthracis,
Emerg. Infect. Dis., 8, 1117–1123, https://doi.org/10.3201/eid0810.020391, 2002.
Sawayama, S., Tsukahara, K., and Yagishita, T.: Phylogenetic description of
immobilized methanogenic community using real-time PCR in a fixed-bed
anaerobic digester, Bioresource Technol., 97, 69–76,
https://doi.org/10.1016/j.biortech.2005.02.011, 2006.
Schink, B.: Energetics of syntrophic cooperation in methanogenic
degradation, Microbiol. Mol. Biol. R., 61, 262–280, 1997.
Shiratori-Takano, H., Akita, K., Yamada, K., Itoh, T., Sugihara, T., Beppu,
T., and Ueda, K.: Description of Symbiobacterium ostreiconchae sp. nov.,
Symbiobacterium turbinis sp. nov. and Symbiobacterium terraclitae sp. nov.,
isolated from shellfish, emended description of the genus Symbiobacterium
and proposal of Symbiobacteriaceae fam. nov,
Int. J. Syst. Evol. Micr., 64, 3375–3383, https://doi.org/10.1099/ijs.0.063750-0, 2014.
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A., and Stahl, D. A.:
Phylogeny of dissimilatory sulfite reductases supports an early origin of
sulfate respiration, J. Bacteriol., 180, 2975–2982,
https://doi.org/10.1128/JB.180.11.2975-2982.1998, 1998.
Wanner, C., Eichinger, F., Jahrfeld, T., and Diamond, L. W.: Causes of
abundant calcite scaling in geothermal wells in the Bavarian Molasse Basin,
Southern Germany, Geothermics, 70, 324–338,
https://doi.org/10.1016/j.geothermics.2017.05.001, 2017.
Wilms, R., Sass, H., Köpke, B., Cypionka, H., and Engelen, B.: Methane
and sulfate profiles within the subsurface of a tidal flat are reflected by
the distribution of sulfate-reducing bacteria and methanogenic archaea,
FEMS Microbiol. Ecol., 59, 611–621, https://doi.org/10.1111/j.1574-6941.2006.00225.x,
2007.
Winfrey, M. R. and Ward, D. M.: Substrates for Sulfate Reduction and Methane
Production in Intertidal Sediments, Appl. Environ. Microb., 45, 193–199, https://doi.org/10.1128/AEM.45.1.193-199.1983, 1983.
Würdemann, H., Westphal, A., Kleyböcker, A., Miethling-Graff, R.,
Teitz, S., Kasina, M., Seibt, A., Wolfgramm, M., Eichinger, F., and Lerm,
S.: Störungen des Betriebs geothermischer Anlagen durch mikrobielle
Stoffwechselprozesse und Erfolg von Gegenmaßnahmen, Grundwasser, 21,
93–106, https://doi.org/10.1007/s00767-016-0324-1, 2016.
Zavarzina, D. G., Sokolova, T. G., Tourova, T. P., Chernyh, N. A.,
Kostrikina, N. A., and Bonch-Osmolovskaya, E. A.: Thermincola ferriacetica
sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic
bacterium capable of dissimilatory Fe(III) reduction, Extremophiles, 11, 1–7, https://doi.org/10.1007/s00792-006-0004-7, 2007.