Spectral analysis of ground thermal image temperatures: what we are learning at Solfatara volcano (Italy)
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli
Osservatorio Vesuviano, Via Diocleziano 328, Naples, 80125, Italy
Paola Cusano
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli
Osservatorio Vesuviano, Via Diocleziano 328, Naples, 80125, Italy
Simona Petrosino
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli
Osservatorio Vesuviano, Via Diocleziano 328, Naples, 80125, Italy
Fabio Sansivero
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli
Osservatorio Vesuviano, Via Diocleziano 328, Naples, 80125, Italy
Giuseppe Vilardo
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli
Osservatorio Vesuviano, Via Diocleziano 328, Naples, 80125, Italy
Related authors
No articles found.
Paola Cusano, Enza De Lauro, Antonietta Esposito, Mariarosaria Falanga, Danilo Galluzzo, and Simona Petrosino
Adv. Geosci., 52, 153–158, https://doi.org/10.5194/adgeo-52-153-2021, https://doi.org/10.5194/adgeo-52-153-2021, 2021
Lucia Nardone, Roberta Esposito, Danilo Galluzzo, Simona Petrosino, Paola Cusano, Mario La Rocca, Mauro Antonio Di Vito, and Francesca Bianco
Adv. Geosci., 52, 75–85, https://doi.org/10.5194/adgeo-52-75-2020, https://doi.org/10.5194/adgeo-52-75-2020, 2020
Short summary
Short summary
We studied the subsoil structure of the Campi Flegrei area using both spectral ratios and array techniques (f-k and MSPAC) applied to seismic noise recorded by three different array. By means of joint inversion of dispersion curve and spectral ratio we obtained a Vs model, that is in a good agreement with the stratigraphic information available in the area. In areas such as Campi Flegrei the definition of the velocity model is a crucial issue to characterize the physical parameters of the medium
Simona Petrosino and Paola Cusano
Adv. Geosci., 52, 29–39, https://doi.org/10.5194/adgeo-52-29-2020, https://doi.org/10.5194/adgeo-52-29-2020, 2020
Short summary
Short summary
We present a detailed analysis of the atypical low frequency seismicity occurred at Mt. Vesuvius in 2003-2018. The different decay patterns of the spectra, the existence of families as well as single events, the wide seismogenic volume, indicate that these events are caused by distinct source mechanisms: slow brittle failure in dry rocks and resonance of fluid-filled cracks. On these basis, we classified the earthquakes as Low Frequency (LF) and Long Period (LP).
Paola Cusano, Simona Petrosino, Enza De Lauro, Salvatore De Martino, and Mariarosaria Falanga
Adv. Geosci., 52, 19–28, https://doi.org/10.5194/adgeo-52-19-2020, https://doi.org/10.5194/adgeo-52-19-2020, 2020
Simona Petrosino, Ciro Ricco, Enza De Lauro, Ida Aquino, and Mariarosaria Falanga
Adv. Geosci., 52, 9–17, https://doi.org/10.5194/adgeo-52-9-2020, https://doi.org/10.5194/adgeo-52-9-2020, 2020
Short summary
Short summary
We analyse tiltmeter time series recorded from April 2015 to March 2019 at three borehole instruments installed at Campi Flegrei caldera (Italy). We evaluate the crustal response in terms of ground tilting to external excitations of medium/long-period tidal constituents.
The results indicate that the tidal tilting is mainly controlled by the local stress field distribution and rheology; in addition, seasonal exogenous factors like rainfalls play a role in modulating the ground deformation.
Mariarosaria Falanga, Enza De Lauro, Simona Petrosino, and Salvatore De Martino
Adv. Geosci., 52, 1–8, https://doi.org/10.5194/adgeo-52-1-2019, https://doi.org/10.5194/adgeo-52-1-2019, 2019
Short summary
Short summary
We study oscillations recorded at Stromboli and Campi Flegrei by different sensors. Seismicity and deformation are investigated on several time scales in order to identify the basic elements of their interaction, whose understanding should provide new insights on the predictive models. At Stromboli, a departure from the equilibrium state is marked by solid tide variations in a certain frequency band. At Campi Flegrei diurnal to annual solid tides modulate an increase of volcanic activity.
Cited articles
Barnie, T. and Oppenheimer, C.: Extracting high temperature event radiance
from satellite images and correcting for saturation using independent
component analysis, Remote Sens. Environ., 158, 56–68,
https://doi.org/10.1016/j.rse.2014.10.023, 2015.
Bevilacqua, A., Neri, A., De Martino, P., Isaia, R., Novellino, A., D'Assisi
Tramparulo, F., and Vitale, S.: Radial interpolation of GPS and leveling
data of ground deformation in a resurgent caldera: application to Campi
Flegrei (Italy), J. Geod., 94, 1–27, https://doi.org/10.1007/s00190-020-01355-x, 2020.
Bianco, F., Castellano, M., Cogliano, R., Cusano, P., Del Pezzo, E., Di
Vito, M. A., Fodarella, A., Galluzzo, D., La Rocca, M., Milana, M.,
Petrosino, S., Pucillo, S., Riccio, G., and Rovelli, A.: Caratterizzazione
del noise sismico nell'area vulcanica dei Campi Flegrei (Napoli):
l'esperimento “UNREST”, Quaderni di Geofisica, 2010, 86, 1–21, ISSN 1590-2595, 2010.
Blackett, M.: An overview of infrared remote sensing of volcanic activity,
J. Imaging, 3, 13, 2017.
Calvari, S., Lodato, L., and Spampinato, L.: Monitoring active volcanoes
using a handheld thermal camera, in: Thermosense XXVI, Vol. 5405, pp. 199–209, International Society for Optics and Photonics, https://doi.org/10.1117/12.547497, 2004.
Capuano, P., De Lauro, E., De Martino, S., Falanga, M., and Petrosino, S.:
Convolutive independent component analysis for processing massive datasets:
a case study at Campi Flegrei (Italy), Nat. Hazards, 86, 417–429,
https://doi.org/10.1007/s11069-016-2545-0, 2017.
Caputo, T., Bellucci Sessa, E., Silvestri, M., Buongiorno, M. F., Musacchio,
M., Sansivero, F., and Vilardo, G.: Surface temperature multiscale monitoring
by thermal infrared satellite and ground images at Campi Flegrei volcanic
area (Italy), Remote Sens., 11, 1007, https://doi.org/10.3390/rs11091007,
2019.
Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., and
Ventura, G.: CO2 degassing and energy release at Solfatara Volcano, Campi
Flegrei, Italy, J. Geophys. Res., 106, 16213–16221, 2001.
Chiodini, G., Granieri, D., Avino, R., Caliro, S., and Costa, A.: Carbon
dioxide diffuse degassing and estimation of heat release from volcanic and
hydrothermal systems, J. Geophys. Res., 110, B08204,
https://doi.org/10.1029/2004JB003542, 2005.
Chiodini, G., Paonita, A., Aiuppa, A., Costa, A., Caliro, S., De Martino,
P., Acocella V., and Vandemeulebrouck, J.: Magmas near the critical
degassing pressure drive volcanic unrest towards a critical state, Nat.
Comm., 7, 13712, https://doi.org/10.1038/ncomms13712, 2016.
Christopher, T., Edmonds, M., Humphreys, M. C. S., and Herd, R. A.: Volcanic
gas emissions from Soufrie`re Hills Volcano, Montserrat 1995–2009, with
implications for mafic magma supply and degassing, Geophys. Res. Lett., 37,
L00E04, https://doi.org/10.1029/2009GL041325, 2010.
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I.: STL: A
Seasonal-Trend Decomposition Procedure Based on Loess, J. Off. Stat., 6, 3–73, 1990.
Costa, A., Folch, A., Macedonio, G., Giaccio, B., Isaia, R., and Smith, V. C.:
Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite
super-eruption, Geophys. Res. Lett., 39, L10310, https://doi.org/10.1029/2012GL051605, 2012.
Deino, A. L., Orsi, G., De Vita, S., and Piochi, M.: The age of the Neapolitan
Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed
by 40Ar/39Ar dating method, J. Volcanol. Geotherm. Res., 133, 157–170, 2004.
De Lauro, E., Falanga, M., and Petrosino, S.: Study on the long period
source mechanism at Campi Flegrei (Italy) by a multiparametric analysis,
Phys. Earth Planet. In., 206–207, 16–30,
https://doi.org/10.1016/j.pepi.2012.06.006, 2012.
De Lauro, E., De Martino, S., Falanga, M., and Petrosino, S.:
Synchronization between tides and sustained oscillations of the hydrothermal
system of Campi Flegrei (Italy), Geochem. Geophy. Geosy., 14, 2628–2637,
https://doi.org/10.1002/ggge.20149, 2013.
De Lauro, E., Petrosino, S., Ricco, C., Aquino, I., and Falanga, M.: Medium and
long period ground oscillatory pattern inferred by borehole tiltmetric data:
New perspectives for the Campi Flegrei caldera crustal dynamics, Earth
Planet Sc. Lett., 504, 21–29, https://doi.org/10.1016/j.epsl.2018.09.039, 2018.
Del Gaudio, C., Aquino, I., Ricciardi, G. P., Ricco, C., and Scandone, R.:
Unrest episodes at Campi Flegrei: A reconstruction of vertical ground
movements during 1905–2009, J. Volcanol. Geotherm. Res., 195, 48–56, https://doi.org/10.1016/j.jvolgeores.2010.05.014, 2010.
Di Vito, M. A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio,
M., Pappalardo, L., and Piochi, M.: Volcanism and deformation since 12,000 years
at the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 91,
221–246, 1999.
Di Vito, M. A., Acocella, V., Aiello, G., Barra, D., Battaglia, M.,
Carandente, A., Del Gaudio, C., de Vita, S., Ricciardi, G. P., Ricco, C.,
Scandone, R., and Terrasi, F.: Magma transfer at Campi Flegrei caldera
(Italy) before the 1538 AD eruption, Sci. Rep., 6, 1–9,
https://doi.org/10.1038/srep32245, 2016.
Giaccio, B., Hajdas, I., Isaia, R., Deino, A., and Nomade, S.: High-precision
14C and 40Ar/39Ar dating of the Campanian ignimbrite (Y-5) reconciles the
time-scales of climatic-cultural processes at 40 Ka, Sci. Rep., 7, 45940,
https://doi.org/10.1038/srep45940, 2017.
Granieri, D., Avino, R., and Chiodini, G.: Carbon dioxide diffuse emission
from the soil: ten years of observations at Vesuvio and Campi Flegrei
(Pozzuoli), and linkages with volcanic activity, Bull. Volcanol.,
72, 103–118, https://doi.org/10.1007/s00445-009-0304-8, 2010.
Godin, G.: The Analysis of Tides, University of Toronto Press, 264 pp., ISBN 0802017479 978-0-8020-1747-5, 1972.
Harris, A.: Thermal remote sensing of active volcanoes: a user's manual,
Cambridge University Press, ISBN 978-0-5218-5945-5, 2013.
Hernández, P. A., Pérez, N. M., Varekamp, J. C., Henriquez, B.,
Hernández, A., Barrancos, J., and Melián, G.: Crater lake
temperature changes of the 2005 eruption of Santa Ana volcano, El Salvador,
Central America, Pure Appl. Geophys., 164, 2507–2522,
https://doi.org/10.1007/s00024-007-0275-7, 2007.
Kervyn, M., Kervyn, F., Goossens, R., Rowland, S. K., and Ernst, G. G. J.:
Mapping volcanic terrain using high-resolution and 3D satellite remote
sensing, Geol. Soc. Lond. Special Publications, 283, 5–30,
https://doi.org/10.1144/SP283.2, 2007.
Kieffer, H. H., Frank, D., and Friedman, J. D.: Thermal infrared surveys at
Mount St. Helens – observations prior to the eruption of May 18, in: The 1980 eruptions of Mount St. Helens,
Washington, edited by: Lipman, P. W. and Mullineaux, D. R., USGS Prof. Pap. 1981, 1250, 257–278, ISSN 10449612, 1981.
Marotta, E., Peluso, R., Avino, R., Belviso, P., Caliro, S., Carandente, A.,
and Marfè, B.: Thermal Energy Release Measurement with Thermal Camera:
The Case of La Solfatara Volcano (Italy), Remote Sensing, 11, 167,
https://doi.org/10.3390/rs11020167, 2019.
Nicholson, E. J., Mather, T. A., Pyle, D. M., Odbert, H. M., and Christopher,
T.: Cyclical patterns in volcanic degassing revealed by SO2 flux timeseries
analysis: Anapplication to Soufrière Hills Volcano, Montserrat, Earth
Planet Sc. Lett., 375, 209–221,
https://doi.org/10.1016/j.epsl.2013.05.032, 2013.
Orsi, G., D'Antonio, M., de Vita, S., and Gallo, G.: The Neapolitan Yellow Tuff,
a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics,
magma withdrawal and caldera collapse, J. Volcanol. Geoth. Res., 53, 275–287, https://doi.org/10.1016/0377-0273(92)90086-S, 1992.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic
analysis with error analysis in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, 2002.
Pering, T. D., Ilanko, T., and Liu, E. J.: Periodicity in Volcanic Gas
Plumes: A Review and Analysis, Geosciences, 9, 394,
https://doi.org/10.3390/geosciences9090394, 2019.
Petrosino, S., Damiano, N., Cusano, P., Di Vito, M. A., de Vita, S., and Del
Pezzo, E.: Subsurface structure of the Solfatara volcano (Campi Flegrei
caldera, Italy) as deduced from joint seismic-noise array, volcanological
and morphostructural analysis, Geochem. Geophy. Geosy., 13, Q07006,
https://doi.org/10.1029/2011GC004030, 2012.
Petrosino, S., Cusano, P., and Madonia, P.: Tidal and hydrological
periodicities of seismicity reveal new risk scenarios at Campi Flegrei
caldera, Sci. Rep., 8, 13808, https://doi.org/10.1038/s41598-018-31760-4,
2018.
Petrosino, S., Ricco, C., De Lauro, E., Aquino, I., and Falanga, M.: Time evolution of medium and long-period ground tilting at Campi Flegrei caldera, Adv. Geosci., 52, 9–17, https://doi.org/10.5194/adgeo-52-9-2020, 2020.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 2 September 2020), 2018.
Ricco, C., Petrosino, S., Aquino, I., Del Gaudio, C., and Falanga, M.: Some
Investigations on a Possible Relationship between Ground Deformation and
Seismic Activity at Campi Flegrei and Ischia Volcanic Areas (Southern
Italy), Geosciences, 9, 222, https://doi.org/10.3390/geosciences9050222,
2019.
Sansivero, F. and Vilardo, G.: Processing Thermal Infrared Imagery
Time-Series from Volcano Permanent Ground-Based Monitoring Network, Latest
Methodological Improvements to Characterize Surface Temperatures Behavior of
Thermal Anomaly Areas, Remote Sens., 11, 553, https://doi.org/10.3390/rs11050553, 2019.
Sansivero, F., Scarpato, G., and Vilardo, G.: The automated infrared thermal
imaging system for the continuous long-term monitoring of the surface
temperature of the Vesuvius crater, Ann. Geophys., 56, S0454,
https://doi.org/10.4401/ag-6460, 2013.
Scarpati, C., Cole, P., and Perrotta, A.: The Neapolitan Yellow Tuffa large
volume multiphase eruption from Campi Flegrei, Southern Italy, Bull.
Volcanol., 55, 343–356, 1993.
Silvestri, M., Cardellini, C., Chiodini, G., and Buongiorno, M. F.:
Satellite derived surface temperature and in situ measurement at Solfatara
of Pozzuoli (Naples, Italy), Geochem. Geophy. Geosy., 17, 2095–2109,
https://doi.org/10.1002/2015GC006195, 2016.
Spampinato, L., Calvari, S., Oppenheimer, C., and Boschi, E.: Volcano
surveillance using infrared cameras, Earth Sci. Rev., 106, 63–91, https://doi.org/10.1016/j.earscirev.2011.01.003, 2011.
Takahashi, Y., Okazaki, Y., Sato, M., Miyahara, H., Sakanoi, K., Hong, P. K., and Hoshino, N.: 27-day variation in cloud amount in the Western Pacific warm pool region and relationship to the solar cycle, Atmos. Chem. Phys., 10, 1577–1584, https://doi.org/10.5194/acp-10-1577-2010, 2010.
Vilardo, G., Chiodini, G., Augusti, V., Granieri, D., Caliro, S., Minopoli,
C., and Terranova, C.: The permanent thermal infrared network for the
monitoring of hydrothermal activity at the Solfatara and Vesuvius volcanoes,
in: Conception, verification and application of innovative techniques to study active volcanoes, Istituto Nazionale di Geofisica e Vulcanologia, 481–495, ISBN 978-8-8899-7209-0, 2008.
Vilardo, G., Ventura, G., Bellucci Sessa, E., and Terranova, C.: Morphometry
of the Campi Flegrei caldera (Southern Italy), J. Maps, 4,
635–640, https://doi.org/10.1080/17445647.2013.842508, 2013.
Vilardo, G., Sansivero, F., and Chiodini, G.: Long-term TIR imagery
processing for spatiotemporal monitoring of surface thermal features in
volcanic environment: A case study in the Campi Flegrei (Southern Italy), J.
Geophys. Res.-Solid Earth, 120, 812–826, https://doi.org/10.1002/2014JB011497, 2015.
Viveiros, F., Vandemeulebrouck, J., Rinaldi, A. P., Ferreira, T., Silva, C.,
and Cruz, J. V.: Periodic behavior of soil CO2 emissions in diffuse
degassing areas of the Azores archipelago: Application to seismovolcanic
monitoring, J. Geophys. Res.-Solid Earth, 119, 7578–7597, https://doi.org/10.1002/2014JB011118, 2014.
Short summary
The Solfatara volcano (Italy), is monitored by a thermal infrared camera ground network handled by INGV. The dataset processed in this work consists of daily maximum temperatures time-series from 25 April 2014 to 31 May 2019. After a pre-processing, PSD's were calculated, filtering in [15–120] day band, to check if characteristic periodicities exist. Most of the periodicities are ascribable to ambient factors, while 18.16 and 88.71 days have a possible endogenous origin.
The Solfatara volcano (Italy), is monitored by a thermal infrared camera ground network handled...