2016 Central Italy Earthquakes: comparison between GPS signals and low-cost distributed MEMS arrays
Nicola Cenni
Department of Geosciences, University of Padova, Padova, 35130,
Italy
Department of Geosciences, University of Padova, Padova, 35130,
Italy
Filippo Casarin
EXPIN srl, Spin-off University of Padova, Padova, 35130, Italy
Giancarlo De Marchi
AD.EL srl, Venice, 30100, Italy
Maria Rosa Valluzzi
Department of Cultural Heritage DBC, University of Padova, Padova,
35130, Italy
Giorgio Cassiani
Department of Geosciences, University of Padova, Padova, 35130,
Italy
Related authors
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Nicola Cenni, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
SOIL, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020, https://doi.org/10.5194/soil-6-95-2020, 2020
Short summary
Short summary
The use of non-invasive geophysical imaging of root system processes is of increasing interest to study soil–plant interactions. The experiment focused on the behaviour of grapevine plants during a controlled infiltration experiment. The combination of the mise-à-la-masse (MALM) method, a variation of the classical electrical tomography map (ERT), for which the current is transmitted directly into the stem, holds the promise of being able to image root distribution.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, and Francesco Morari
SOIL, 10, 843–857, https://doi.org/10.5194/soil-10-843-2024, https://doi.org/10.5194/soil-10-843-2024, 2024
Short summary
Short summary
Soil compaction resulting from inappropriate agricultural practices affects soil ecological functions, decreasing the water-use efficiency of plants. Recent developments contributed to innovative sensing approaches aimed at safeguarding soil health. Here, we explored how the most used geophysical methods detect soil compaction. Results, validated with traditional characterization methods, show the pros and cons of non-invasive techniques and their ability to characterize compacted areas.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190, https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary
Short summary
The Ice Memory project aims to extract, analyze, and store ice cores from worldwide retreating glaciers. One of the selected sites is the last remaining ice body in the Apennines, the Calderone Glacier. To assess the most suitable drilling position, geophysical surveys were performed. Reliable ground penetrating radar measurements have been positively combined with a geophysical technique rarely applied in glacier environments, the Frequency Domain Electro-Magnetic prospection.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Nicola Cenni, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
SOIL, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020, https://doi.org/10.5194/soil-6-95-2020, 2020
Short summary
Short summary
The use of non-invasive geophysical imaging of root system processes is of increasing interest to study soil–plant interactions. The experiment focused on the behaviour of grapevine plants during a controlled infiltration experiment. The combination of the mise-à-la-masse (MALM) method, a variation of the classical electrical tomography map (ERT), for which the current is transmitted directly into the stem, holds the promise of being able to image root distribution.
C. Marson, G. Sammartano, A. Spanò, and M. R. Valluzzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W11, 823–830, https://doi.org/10.5194/isprs-archives-XLII-2-W11-823-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W11-823-2019, 2019
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, https://doi.org/10.5194/hess-22-5427-2018, 2018
Klaus Haaken, Gian Piero Deidda, Giorgio Cassiani, Rita Deiana, Mario Putti, Claudio Paniconi, Carlotta Scudeler, and Andreas Kemna
Hydrol. Earth Syst. Sci., 21, 1439–1454, https://doi.org/10.5194/hess-21-1439-2017, https://doi.org/10.5194/hess-21-1439-2017, 2017
Short summary
Short summary
The paper presents a general methodology that will help understand how freshwater and saltwater may interact in natural porous media, with a particular view at practical applications such as the storage of freshwater underground in critical areas, e.g., semi-arid zones around the Mediterranean sea. The methodology is applied to a case study in Sardinia and shows how a mix of advanced monitoring and mathematical modeling tremendously advance our understanding of these systems.
G. Cassiani, J. Boaga, D. Vanella, M. T. Perri, and S. Consoli
Hydrol. Earth Syst. Sci., 19, 2213–2225, https://doi.org/10.5194/hess-19-2213-2015, https://doi.org/10.5194/hess-19-2213-2015, 2015
Short summary
Short summary
The paper presents an integrated approach to monitoring root water uptake and link this information to the plant transpiration measured by sap flow and eddy covariance. The monitoring of soil conditions is achieved using 3-D electrical resistivity tomography. This ensemble of data can be used jointly to model the soil-plant interactions and identify the extent and efficiency of the root zone in front of existing irrigation schemes. A case study is presented regarding an orange orchard in Sicily.
N. Ursino, G. Cassiani, R. Deiana, G. Vignoli, and J. Boaga
Hydrol. Earth Syst. Sci., 18, 1105–1118, https://doi.org/10.5194/hess-18-1105-2014, https://doi.org/10.5194/hess-18-1105-2014, 2014
Cited articles
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.:
ITRF2014: A new release of the International Terrestrial Reference Frame
modeling nonlinear station motions, J. Geophys. Res.-Sol.
Ea., 121, 6109–6131, https://doi.org/10.1002/2016JB013098, 2014.
Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di
Alessandro, C., D'Anastasio, E., D'Agostino, N., Giuliani, R., and Mattone, M.:
Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes:
The case of the Mw 6.3 L'Aquila (central Italy) event, J.
Geophys. Res.-Sol. Ea., 116, 1–14,
https://doi.org/10.1029/2010JB007834, 2011.
Avallone, A., Latorre, D., Serpelloni, E., Cavaliere, A., Herrero, A.,
Cecere, G., D'Agostino, N., D'Ambrosio, C., Devoti, R., Giuliani, R., Mattone, M.,
Calcaterra, S., Gambino, P., Abruzzese, L., Cardinale, V., Castagnozzi, A., De
Luca, G., Falco, L., Massucci, A., Memmolo, A., Migliari, F., Minichello, F.,
Moschillo, R., Zarrilli, L., and Selvaggi, G.: Coseismic displacement
waveforms for the 2016 August 24 Mw 6.0 Amatrice earthquake (central Italy)
carried out from high-rate GPS data, Ann. Geophys., 59,
1–11, https://doi.org/10.4401/ag-7275, 2016.
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano,
S., Tiberti M. M., and Boschi, E.: The Database of Individual Seismogenic
Sources (DISS), version 3: Summarizing 20 years of research on Italy's
earthquake geology, Tectonophysics, 453, 20–43,
https://doi.org/10.1016/j.tecto.2007.04.014, 2008.
Boaga, J., Casarin, F., De Marchi, G., Valluzzi, M. R., Cassiani, G.: Central Italy Earthquakes Recorded by Low Cost MEMS Distributed Arrays, Seismol. Res. Lett., 90, 672–682, https://doi.org/10.1785/0220180198, 2018.
Bock, Y., Prawirodirdjo, L., and Melbourne T.I.: Detection of arbitrarily
large dynamic ground motions with a dense high-rate GPS network, Geophys.
Res. Lett., 31, L06604, https://doi.org/10.1029/2003GL019150, 2004.
Boncio, P. and Lavecchia, G.: A structural model for active extension in
Central Italy, J. Geodyn., 29, 233–244,
https://doi.org/10.1016/S0264-3707(99)00050-2, 2000.
Bonini, L., Maesano, F. E., Basili, R., Burrato, P., Carafa, M. C. M., Fracassi, U., Kastelic, V., Tarabusi, G., Tiberti, M. M., Vannoli, P., Valensise, G.: Imaging the tectonic framework of the 24 August 2016, Amatrice (central Italy) earthquake sequence: New roles for old players?, Ann. Geophys., 59, https://doi.org/10.4401/ag-7229, 2016.
Cenni, N., Mantovani, E., Baldi, P., and Viti, M.: Present kinematics of
Central and Northern Italy from continuous GPS measurements, J.
Geodyn., 58, 62–72, https://doi.org/10.1016/j.jog.2012.02.004, 2012.
Cenni, N., Viti, M., Baldi, P., Mantovani, E., Bacchetti, M., and Vannucchi,
A.: Present vertical movements in Central and Northern Italy from GPS data:
Possible role of natural and anthropogenic causes, J. Geodyn.,
71, 74–85, https://doi.org/10.1016/j.jog.2013.07.004, 2013.
Cheloni, D., Serpelloni, E., Devoti, R., D'agostino, N., Pietrantonio, G.,
Riguzzi, F., Anzidei, M., Avallone, A., Cavaliere, A., Cecere, G.,
D'Ambrosio, C., Esposito A., Falco, L., Galvani, A., Selvaggi, G., Sepe, V.,
Calcaterra, S., Giuliani, R., Mattone, M., Gambino, P., Abruzzese, L.,
Cardinale, V., Castagnozzi, A., De Luca, G., Massucci, A., Memmolo, A.,
Migliari, F., Minichiello, F., and Zarrilli, L.: GPS observations of
coseismic deformation following the 2016, August 24, Mw 6 Amatrice
earthquake (Central italy): Data, analysis and preliminary fault model,
Ann. Geophys., 59, 1–8, https://doi.org/10.4401/ag-7269,
2016.
Cheloni, D., De Novellis, V., Albano, M., Antonioli, A., Anzidei, M.,
Atzori, S., Avallone, A., Bignami, C., Bonano, M., Calcaterra, S., Castaldo,
R., Casu, F., Cecere, G., De Luca, C., Devoti, R., Di Bucci, D., Esposito,
A., Galvani, A., Gambino, P., Giuliani, R., Lanari, R., Manunta, M., Manzo,
M., Mattone, M., Montuori A., Pepe, A., Pepe, S., Pezzo, G., Pietrantonio,
G., Polcari., M., Riguzzi, F., Salvi, S., Sepe, V., Serpelloni, E., Solaro,
G., Stramondo, S., Tizzani, P., Tolomei, C., Trasatti, E., Valerio E.,
Zinno, I., and Doglioni, C.: Geodetic model of the 2016 Central Italy
earthquake sequence inferred from InSAR and GPS data, Geophys. Res.
Lett., 44, 6778–6787, https://doi.org/10.1002/2017GL073580, 2017.
D'Alessandro, A., Luzio, D., and D'Anna, G.: Urban MEMS based seismic
network for post-earthquakes rapid disaster assessment, Adv. Geosci., 40,
1–9, 2014.
Dong, D., Herring, T. A., and King, R. W.: Estimating regional deformation
from a combination of space and terrestrial geodetic data, J.
Geodesy, 72, 200–214, https://doi.org/10.1007/s001900050161, 1998.
Evans, J. R., Hamstra Jr,. R.H., Kundig, C., Camina, P., and Rogers, J. A.: TREMOR: A Wireless MEMS Accelerograph for Dense Arrays, Earthq. Spectra 21, no. 1, 91–124, 2005
Evans, J. R., Allen, R. M., Chung, A. I., Cochran, E. S., Guy, R., Hellweg,
M., and Lawrence, J. F.: Performance of Several Low-Cost Accelerometers,
Seismol. Res. Lett., 85, 147–158, 2014.
Fleming, K., Picozzi, M., Milkereit, C., Kuhnlenz, F., Lichtblau, B.,
Fischer, J., Zulfikar, C., Ozel, O., and the SAFER and EDIM working groups: The
self-organizing seismic early warning information network (SOSEWIN),
Seismol. Res. Lett., 80, 755–771, 2009.
Galadini, F. and Galli, P.: Active Tectonics in the Central Apennines
(Italy) – Input Data for Seismic Hazard Assessment November 2000, Nat.
Hazards, 22, 225–268, https://doi.org/10.1023/A:1008149531980, 2000.
Herring, T. A., King, R. W., and McClusky, S. C.: GAMIT Reference Manual, GPS
Analysis At MIT, Release 10.7, Department of Earth, Atmospheric and
Planetary Sciences, Massachusset Institute of Technology, Cambridge, 2018a.
Herring, T. A., King, R. W., and McClusky, S. C.: Global Kalman Filter VLBI And
GPS Analysis Program, GLOBK Reference Manual, Release 10.6. Department of
Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, 2018b.
Larson, K. M.: GPS seismology, J. Geodesy, 83, 227–233,
https://doi.org/10.1007/s00190-008-0233-x, 2009.
Larson, K. M., Bodin, P., and Gomberg J.: Using 1-Hz GPS data to measure
deformations caused by the Denali fault earth, Science, 300, 1421–1424, https://doi.org/10.1126/science.1084531, 2003.
Lawrence, J. F. , Cochran, E. S., Chung, A., Kaiser, A., Christensen, C. M., Allen, R., Baker, J., Fry, B., Heaton, T., Kilb, D., Kohler, M. D., and Taufer, M.: Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake, B. Seismol. Soc. Am., 104, 184–192, 2014.
Lomb, N. R.: Least-squares frequency analysis of unevenly spaced data,
Astrophys. Space Sci., 39, 447–462, 1976.
Mantovani, E., Viti, M., Babbucci, D., Tamburelli, C., and Cenni, N.: How
and why the present tectonic setting in the Apennine belt has developed,
J. Geol. Soc., 1–12, jgs2018-175,
https://doi.org/10.1144/jgs2018-175, 2019.
Marchetti, A., Ciaccio, M. G., Nardi A., Bono, A., Mele, F. M., Margheriti, L., Rossi, A., P. Battelli, P., Melorio, C., Castello, B., Lauciani, V., Berardi, M., Castellano, C., Arcoraci, L., Lozzi, G., Battelli, A., Thermes, C., Pagliuca, N., Modica, G., Lisi, A., Pizzino, L., Baccheschi, P., Pintore., S., Quintiliani, M., Mandiello, A., Marcocci, C., Fares, M., Cheloni, D., Frepoli, A., Latorre, D., Lombardi, A.M., Moretti, M., Pastori, M., Vallocchia, M., Govoni, A., Scognamiglio, L., Basili, A., Michelini, A., and Mazza S.: The Italian Seismic Bulletin: strategies, revised pickings and locations of the central Italy seismic sequence, Ann. Geophys., 59, https://doi.org/10.4401/ag-7169, 2016.
Miyazaki, S., Larson, K. M., Choi, K., Hikima, K., Koketsu, K., Bodin, P., Haase, J., Emore, G., and Yamagiwa A.: Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data, Geophys. Res. Lett., 31, L21603, https://doi.org/10.1029/ 2004GL021457, 2004.
Ring-INGV: High-Rate GPS data archive of the 2016 Central Italy seismic sequence, GNSS DATA, available at: ftp://gpsfree.gm.ingv.it/amatrice2016/hrgps/data/, last access: 1 August 2019.
Savage, J. C. and Langbein, J.: Postearthquake relaxation after the 2004 M6
Parkfield, California, earthquake and rate-and-state friction, J.
Geophys. Res.-Sol. Ea., 113, 1–17,
https://doi.org/10.1029/2008JB005723, 2008.
Scargle, J. D.: Studies in Astronomical Time Series Analysis II. Statistical
aspects of spectral analysis of unevenly sampled data, Astrophys. J., 263,
835–853, 1982.
Wang, G. Q., Boore, D. M., Tang, G., and Zhou, X.: Comparisons of ground
motions from colocated and closely spaced one sample per second Global
Positioning System and accelerograph recordings of the 2003 M 6.5 San
Simeon, California, earthquake in the Parkfield region, B. Seismol. Soc.
Am., 97, 76–90, https://doi.org/10.1785/0120060053, 2007.
Wilkinson, M. W., McCaffrey, K. J. W., Jones, R. R., Roberts, G. P.,
Holdsworth, R. E., Gregory, L. C., Walters, R. J., Wedmore, L., Goodall, H.,
and Iezzi, F.: Near-field fault slip of the 2016 Vettore Mw 6.6 earthquake
(Central Italy) measured using low-cost GNSS/704/4111/704/2151/134/123
article, Sci. Rep., 7, 1–7,
https://doi.org/10.1038/s41598-017-04917-w, 2017.
Xiang, Y., Yue, J., Tang, K., and Li, Z.: A comprehensive study of the 2016
Mw 6.0 Italy earthquake based on high-rate (10 Hz) GPS data, Adv.
Space Res., 63, 103–117, https://doi.org/10.1016/j.asr.2018.08.027,
2019.