Articles | Volume 49
https://doi.org/10.5194/adgeo-49-149-2019
https://doi.org/10.5194/adgeo-49-149-2019
02 Oct 2019
 | 02 Oct 2019

Lab scale salt caverns – first results on construction and investigation techniques

Bettina Strauch, Martin Zimmer, and Rik Tjallingii

Related authors

Origin and Evolution of Gas in Salt Beds of a Potash Mine
Martin Zimmer, Bettina Strauch, Axel Zirkler, Samuel Niedermann, and Andrea Vieth-Hillebrand
Adv. Geosci., 54, 15–21, https://doi.org/10.5194/adgeo-54-15-2020,https://doi.org/10.5194/adgeo-54-15-2020, 2020
Short summary
The influence of gas and humidity on the mineralogy of various salt compositions – implications for natural and technical caverns
Bettina Strauch, Martin Zimmer, Axel Zirkler, Stefan Höntzsch, and Anja M. Schleicher
Adv. Geosci., 45, 227–233, https://doi.org/10.5194/adgeo-45-227-2018,https://doi.org/10.5194/adgeo-45-227-2018, 2018
Short summary

Cited articles

Berest, P., Bergues, J., Brouard, B., Durup, J. G., and Guerber, B.: A salt cavern abandonment test, Int. J. Rock Mech. Min., 38, 357–368, 2001. 
Brouard, B., Bérest, P., and de Greef, V.: Salt Permeability Testing- The Influence of Permeability and Stress on Spherical Hollow Salt Samples, Part 1 SMRI Research Report RR2001-8, 2001. 
Braitsch, O.: Entstehung und Stoffbestand der Salzlagerstätten, in: Mineralogie und Petrographie in Einzeldarstellungen, edited by: Engelhardt, W. V. and Zemann, J., Bd. 3, Springer Verlag, Berlin, 232 pp., 1962. 
Durie, R. W.: Mechanism of the Dissolution of Salt in the Formation of Underground Salt Cavities, Soc. Petrol. Eng. J., IV, 183–190, 1964. 
Durup, J. G.: Long-Term Tests for Tightness Evaluations with Brine and Gas in Salt (Field-Test No. 2 with Gas), SMRI Research and Development Project Report, Proc. S.M.R.I. Fall Meeting, September 1994, Hannover, Germany, 1994. 
Download
Short summary
Salt caverns are important as subsurface storage space. Knowledge of geochemical interactions in the transition zone between cavity and salt rock is necessary. Lab-based experiments were performed in hand-sized specimens by creating cm-sized cavities. XRF mapping represents a suitable technique to track spatial mineralogical changes related to rock-fluid interaction in salt rocks and showed a clear separation between Na, Mg and K salt layers. Fluorescent visualize potential fluid pathways.