The European Climate Research Alliance (ECRA): Collaboration from bottom-up
Winfried Hoke
CORRESPONDING AUTHOR
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and
Climate Research – Atmospheric Trace Gases and Remote Sensing (IMK-ASF),
Karlsruhe, Germany
Tina Swierczynski
Alfred Wegener Institute, Potsdam, Germany
Peter Braesicke
Karlsruhe Institute of Technology (KIT), Institute of Meteorology and
Climate Research – Atmospheric Trace Gases and Remote Sensing (IMK-ASF),
Karlsruhe, Germany
Karin Lochte
Alfred Wegener Institute, Potsdam, Germany
Len Shaffrey
University of Reading, Reading, UK
Martin Drews
Technical University of Denmark, Department of Management Engineering,
Lyngby, Denmark
Hilppa Gregow
Finnish Meteorological Institute, Weather and Climate Change Impact
Research, Helsinki, Finland
Ralf Ludwig
Ludwig-Maximilians-Universität, Department of Geography, Munich,
Germany
Jan Even Øie Nilsen
Nansen Environmental and Remote Sensing Center, and Bjerknes Centre
for Climate Research, Bergen, Norway
Elisa Palazzi
Institute of Atmospheric Sciences and Climate-National Research
Council (ISAC-CNR), Torino, Italy
Gianmaria Sannino
Italian National Agency for New Technologies, Energy and Sustainable
Economic Development (ENEA), Climate Modelling and Impacts Laboratory, Rome, Italy
Lars Henrik Smedsrud
University of Bergen, Geophysical Institute, Norway, and Bjerknes
Centre for Climate Research, Bergen, Norway
ECRA network
A full list of the network appears at the end of the
paper.
Related authors
No articles found.
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864, https://doi.org/10.5194/egusphere-2024-2864, 2024
Short summary
Short summary
We applied a biogeochemical model on grasslands in the pre-Alpine Ammer region in Germany and analyzed the influence of soil and climate on annual yields. In drought affected years, total yields were decreased by 4 %. Overall, yields decrease with rising elevation, but less so in drier and hotter years, whereas soil organic carbon has a positive impact on yields, especially in drier years. Our findings imply, that adapted management in the region allows to mitigate yield losses from drought.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and VIctoria Anne SInclair
EGUsphere, https://doi.org/10.5194/egusphere-2024-3019, https://doi.org/10.5194/egusphere-2024-3019, 2024
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing 92 most damaging windstorms (2005–2018). The southwest- and northwest-originating windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Marco Chericoni, Giorgia Fosser, Emmanouil Flaounas, Gianmaria Sannino, and Alessandro Anav
EGUsphere, https://doi.org/10.5194/egusphere-2024-2829, https://doi.org/10.5194/egusphere-2024-2829, 2024
Short summary
Short summary
This study explores how sea surface energy influences both the atmosphere and ocean at various vertical levels during extreme Mediterranean cyclones. It focuses on cyclones' precipitation and wind speed response, as well as on ocean temperature variation. The analysis shows the effectiveness of the Regional Coupled Model in coherently representing the thermodynamic processes associated with extreme cyclones across both the atmosphere and the ocean.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Tatiana Klimiuk, Patrick Ludwig, Antonio Sanchez-Benitez, Helge F. Goessling, Peter Braesicke, and Joaquim G. Pinto
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-16, https://doi.org/10.5194/esd-2024-16, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
Our study examines potential changes in heatwaves in Central Europe due to global warming, using the 2019 summer heatwave as an example. By producing high-resolution storylines, we offer insights into how future heatwaves might spread, persist longer, and where stronger or weaker temperature increases may occur. This research helps understand regional thermodynamic responses and highlights the importance of local strategies to protect communities from future heat events.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Kieran M. R. Hunt, Jean-Philippe Baudouin, Andrew G. Turner, A. P. Dimri, Ghulam Jeelani, Pooja, Rajib Chattopadhyay, Forest Cannon, T. Arulalan, M. S. Shekhar, T. P. Sabin, and Eliza Palazzi
EGUsphere, https://doi.org/10.5194/egusphere-2024-820, https://doi.org/10.5194/egusphere-2024-820, 2024
Short summary
Short summary
Western disturbances (WDs) are storms that predominantly affect north India and Pakistan during the winter months, where they play an important role in regional water security, but can also bring a range of natural hazards. In this review, we summarise recent literature across a range of topics: their structure and lifecycle, precipitation and impacts, interactions with large-scale weather patterns, representation in models, how well they are forecast, and their response to changes in climate.
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024, https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Short summary
Coastal floods occur due to extreme sea levels (ESLs) which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale increase ESL predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighbouring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Christian Scharun, Roland Ruhnke, and Peter Braesicke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-91, https://doi.org/10.5194/gmd-2023-91, 2023
Publication in GMD not foreseen
Short summary
Short summary
The identification and quantification of greenhouse gas (GHG) emissions is an important task for monitoring mitigation strategies under climate change. With RICHARD 1.0, we developed a novel approach using spatiotemporal proxy data and a selection algorithm to detect GHG emission hotspots. By using a one year dataset of global climate model output we showed that RICHARD is able to determine and quantify the source strengths of GHG emission hotspots much more precisely than conventional methods.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023, https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Eric Förster, Harald Bönisch, Marco Neumaier, Florian Obersteiner, Andreas Zahn, Andreas Hilboll, Anna B. Kalisz Hedegaard, Nikos Daskalakis, Alexandros Panagiotis Poulidis, Mihalis Vrekoussis, Michael Lichtenstern, and Peter Braesicke
Atmos. Chem. Phys., 23, 1893–1918, https://doi.org/10.5194/acp-23-1893-2023, https://doi.org/10.5194/acp-23-1893-2023, 2023
Short summary
Short summary
The airborne megacity campaign EMeRGe provided an unprecedented amount of trace gas measurements. We combine measured volatile organic compounds (VOCs) with trajectory-modelled emission uptakes to identify potential source regions of pollution. We also characterise the chemical fingerprints (e.g. biomass burning and anthropogenic signatures) of the probed air masses to corroborate the contributing source regions. Our approach is the first large-scale study of VOCs originating from megacities.
Ewa M. Bednarz, Daniele Visioni, Ben Kravitz, Andy Jones, James M. Haywood, Jadwiga Richter, Douglas G. MacMartin, and Peter Braesicke
Atmos. Chem. Phys., 23, 687–709, https://doi.org/10.5194/acp-23-687-2023, https://doi.org/10.5194/acp-23-687-2023, 2023
Short summary
Short summary
Building on Part 1 of this two-part study, we demonstrate the role of biases in climatological circulation and specific aspects of model microphysics in driving the differences in simulated sulfate distributions amongst three Earth system models. We then characterize the simulated changes in stratospheric and free-tropospheric temperatures, ozone, water vapor, and large-scale circulation, elucidating the role of the above aspects in the surface responses discussed in Part 1.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676, https://doi.org/10.5194/acp-22-10657-2022, https://doi.org/10.5194/acp-22-10657-2022, 2022
Short summary
Short summary
Atmospheric impacts of chlorinated very short-lived substances (Cl-VSLS) over the first two decades of the 21st century are assessed using the UM-UKCA chemistry–climate model. Stratospheric input of Cl from Cl-VSLS is estimated at ~130 ppt in 2019. The use of model set-up with constrained meteorology significantly increases the abundance of Cl-VSLS in the lower stratosphere relative to the free-running set-up. The growth in Cl-VSLS emissions significantly impacted recent HCl and COCl2 trends.
Fabio Mangini, Léon Chafik, Antonio Bonaduce, Laurent Bertino, and Jan Even Ø. Nilsen
Ocean Sci., 18, 331–359, https://doi.org/10.5194/os-18-331-2022, https://doi.org/10.5194/os-18-331-2022, 2022
Short summary
Short summary
We validate the recent ALES-reprocessed coastal satellite altimetry dataset along the Norwegian coast between 2003 and 2018. We find that coastal altimetry and conventional altimetry products perform similarly along the Norwegian coast. However, the agreement with tide gauges slightly increases in terms of trends when we use the ALES coastal altimetry data. We then use the ALES dataset and hydrographic stations to explore the steric contribution to the Norwegian sea-level anomaly.
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022, https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
Short summary
We compare remote sensing observations of H2O, O3, HNO3 and clouds in the upper troposphere–lowermost stratosphere during an Arctic winter long-range research flight with simulations by two different state-of-the-art model systems. We find good agreement for dynamical structures, trace gas distributions and clouds. We investigate model biases and sensitivities, with the goal of aiding model development and improving our understanding of processes in the upper troposphere–lowermost stratosphere.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Elisa Brussolo, Elisa Palazzi, Jost von Hardenberg, Giulio Masetti, Gianna Vivaldo, Maurizio Previati, Davide Canone, Davide Gisolo, Ivan Bevilacqua, Antonello Provenzale, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 26, 407–427, https://doi.org/10.5194/hess-26-407-2022, https://doi.org/10.5194/hess-26-407-2022, 2022
Short summary
Short summary
In this study, we evaluate the past, present and future quantity of groundwater potentially available for drinking purposes in the metropolitan area of Turin, north-western Italy. In order to effectively manage water resources, a knowledge of the water cycle components is necessary, including precipitation, evapotranspiration and subsurface reservoirs. All these components have been carefully evaluated in this paper, using observational datasets and modelling approaches.
Elizaveta Felsche and Ralf Ludwig
Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021, https://doi.org/10.5194/nhess-21-3679-2021, 2021
Short summary
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Terhi K. Laurila, Hilppa Gregow, Joona Cornér, and Victoria A. Sinclair
Weather Clim. Dynam., 2, 1111–1130, https://doi.org/10.5194/wcd-2-1111-2021, https://doi.org/10.5194/wcd-2-1111-2021, 2021
Short summary
Short summary
We create a climatology of mid-latitude cyclones and windstorms in northern Europe and investigate how sensitive the minimum pressure and maximum gust of windstorms are to four precursors. Windstorms are more common in the cold season than the warm season, whereas the number of mid-latitude cyclones has no annual cycle. The low-level temperature gradient has the strongest impact of all considered precursors on the intensity of windstorms in terms of both the minimum pressure and maximum gust.
Christopher J. Diekmann, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira García, Farahnaz Khosrawi, Eliezer Sepúlveda, Peter Knippertz, and Peter Braesicke
Earth Syst. Sci. Data, 13, 5273–5292, https://doi.org/10.5194/essd-13-5273-2021, https://doi.org/10.5194/essd-13-5273-2021, 2021
Short summary
Short summary
The joint analysis of different stable water isotopes in water vapour is a powerful tool for investigating atmospheric moisture pathways. This paper presents a novel global and multi-annual dataset of H2O and HDO in mid-tropospheric water vapour by using data from the satellite sensor Metop/IASI. Due to its unique combination of coverage and resolution in space and time, this dataset is highly promising for studying the hydrological cycle and its representation in weather and climate models.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Otto Hyvärinen, Terhi K. Laurila, Olle Räty, Natalia Korhonen, Andrea Vajda, and Hilppa Gregow
Adv. Sci. Res., 18, 127–134, https://doi.org/10.5194/asr-18-127-2021, https://doi.org/10.5194/asr-18-127-2021, 2021
Short summary
Short summary
Wind speed forecasts have many potential users that could benefit from skilful forecasts. We validated weekly mean speed forecasts for Finland using
forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). We concentrate on winter (November, December and January) forecasts.
The forecasts proved to be skilful until the third week, but the longest skilful lead time depends on how the skill is calculated and what is used as the reference.
Alessandro Anav, Adriana Carillo, Massimiliano Palma, Maria Vittoria Struglia, Ufuk Utku Turuncoglu, and Gianmaria Sannino
Geosci. Model Dev., 14, 4159–4185, https://doi.org/10.5194/gmd-14-4159-2021, https://doi.org/10.5194/gmd-14-4159-2021, 2021
Short summary
Short summary
The Mediterranean Basin is a complex region, characterized by the presence of pronounced topography and a complex land–sea distribution including a considerable number of islands and straits; these features generate strong local atmosphere–sea interactions.
Regional Earth system models have been developed and used to study both present and future Mediterranean climate systems. The main aims of this paper are to present and evaluate the newly developed regional Earth system model ENEA-REG.
Michael Weimer, Jennifer Buchmüller, Lars Hoffmann, Ole Kirner, Beiping Luo, Roland Ruhnke, Michael Steiner, Ines Tritscher, and Peter Braesicke
Atmos. Chem. Phys., 21, 9515–9543, https://doi.org/10.5194/acp-21-9515-2021, https://doi.org/10.5194/acp-21-9515-2021, 2021
Short summary
Short summary
We show that we are able to directly simulate polar stratospheric clouds formed locally in a mountain wave and represent their effect on the ozone chemistry with the global atmospheric chemistry model ICON-ART. Thus, we show the first simulations that close the gap between directly resolved mountain-wave-induced polar stratospheric clouds and their representation at coarse global resolutions.
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, https://doi.org/10.5194/esd-12-401-2021, 2021
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021, https://doi.org/10.5194/essd-13-983-2021, 2021
Short summary
Short summary
This study provides a homogeneous data set of 10-year rainfall return levels based on 50 simulations of the Canadian Regional Climate Model v5 (CRCM5). In order to evaluate its quality, the return levels are compared to those of observation-based rainfall of 16 European countries from 32 different sources. The CRCM5 is able to capture the general spatial pattern of observed extreme precipitation, and also the intensity is reproduced in 77 % of the area for rainfall durations of 3 h and longer.
Fabian von Trentini, Emma E. Aalbers, Erich M. Fischer, and Ralf Ludwig
Earth Syst. Dynam., 11, 1013–1031, https://doi.org/10.5194/esd-11-1013-2020, https://doi.org/10.5194/esd-11-1013-2020, 2020
Short summary
Short summary
We compare the inter-annual variability of three single-model initial-condition large ensembles (SMILEs), downscaled with three regional climate models over Europe for seasonal temperature and precipitation, the number of heatwaves, and maximum length of dry periods. They all show good consistency with observational data. The magnitude of variability and the future development are similar in many cases. In general, variability increases for summer indicators and decreases for winter indicators.
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Michela Angeloni, Elisa Palazzi, and Jost von Hardenberg
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-245, https://doi.org/10.5194/gmd-2020-245, 2020
Preprint withdrawn
Short summary
Short summary
We compare the Planet Simulator, an Earth-system Model of Intermediate Complexity, using a 3D dynamical ocean, with two configurations using a simpler mixed-layer ocean. A tuning of oceanic parameters allows a reasonable mean climate in all cases. Model equilibrium climate sensitivity in abrupt CO2 concentration change experiments is found to be significantly affected by the sea-ice feedbacks and by the parameterization of meridional oceanic heat transport in the mixed-layer configurations.
Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig
The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020, https://doi.org/10.5194/tc-14-2909-2020, 2020
Short summary
Short summary
Climate change will significantly reduce snow cover, but the extent remains disputed. We use regional climate model data as a driver for a snow model to investigate the impacts of climate change and climate variability on snow. We show that natural climate variability is a dominant source of uncertainty in future snow trends. We show that anthropogenic climate change will change the interannual variability of snow. Those factors will increase the vulnerabilities of snow-dependent economies.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Andrea Böhnisch, Ralf Ludwig, and Martin Leduc
Earth Syst. Dynam., 11, 617–640, https://doi.org/10.5194/esd-11-617-2020, https://doi.org/10.5194/esd-11-617-2020, 2020
Short summary
Short summary
North Atlantic air pressure variations influencing European climate variables are simulated in coarse-resolution global climate models (GCMs). As single-model runs do not sufficiently describe variations of their patterns, several model runs with slightly diverging initial conditions are analyzed. The study shows that GCM and regional climate model (RCM) patterns vary in a similar range over the same domain, while RCMs add consistent fine-scale information due to their higher spatial resolution.
Natalia Korhonen, Otto Hyvärinen, Matti Kämäräinen, David S. Richardson, Heikki Järvinen, and Hilppa Gregow
Atmos. Chem. Phys., 20, 8441–8451, https://doi.org/10.5194/acp-20-8441-2020, https://doi.org/10.5194/acp-20-8441-2020, 2020
Short summary
Short summary
Reanalysis data of the strength of the polar vortex is applied in the post-processing of the European Centre for Medium-Range Weather Forecasts (ECMWF) winter surface temperature forecasts for weeks 3–4 and 5–6 over northern Europe. In this way, the skill scores of these forecasts are slightly improved. It is also found that, in cases where the polar vortex was weak at the start of the forecast, the mean skill scores of these forecasts were higher than average.
Marleen Braun, Jens-Uwe Grooß, Wolfgang Woiwode, Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Hermann Oelhaf, Peter Preusse, Jörn Ungermann, Björn-Martin Sinnhuber, Helmut Ziereis, and Peter Braesicke
Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, https://doi.org/10.5194/acp-19-13681-2019, 2019
Short summary
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
Ewa M. Bednarz, Amanda C. Maycock, Peter Braesicke, Paul J. Telford, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 9833–9846, https://doi.org/10.5194/acp-19-9833-2019, https://doi.org/10.5194/acp-19-9833-2019, 2019
Short summary
Short summary
The atmospheric response to the amplitude of 11-year solar cycle in UM-UKCA is separated into the contributions from changes in direct radiative heating and photolysis rates, and the results compared with a control case with both effects included. We find that while the tropical responses are largely additive, this is not necessarily the case in the high latitudes. We suggest that solar-induced changes in ozone are important for modulating the SH dynamical response to the 11-year solar cycle.
Nils König, Peter Braesicke, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 4113–4129, https://doi.org/10.5194/amt-12-4113-2019, https://doi.org/10.5194/amt-12-4113-2019, 2019
Short summary
Short summary
Inference of the tropopause from temperature profiles of finite vertical resolution entails an uncertainty of the tropopause altitude. We assess this effect by degrading the resolution of the sonde data. The tropopause altitude inferred from coarse grid profiles was found to be lower than that inferred from the original profiles for tropical and midlatitudinal radiosonde profiles. The mean displacement of the lapse rate tropopause inferred from a 3 km resolution profile is −400 m for Hilo.
Ewa M. Bednarz, Amanda C. Maycock, Paul J. Telford, Peter Braesicke, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 5209–5233, https://doi.org/10.5194/acp-19-5209-2019, https://doi.org/10.5194/acp-19-5209-2019, 2019
Short summary
Short summary
Following model improvements, the atmospheric response to the 11-year solar cycle forcing simulated in the UM-UKCA chemistry–climate model is discussed for the first time. In contrast to most previous studies in the literature, we compare the results diagnosed using both a composite and a MLR methodology, and we show that apparently different signals can be diagnosed in the troposphere. In addition, we look at the role of internal atmospheric variability for the detection of the solar response.
Philipp Anhaus, Lars H. Smedsrud, Marius Årthun, and Fiammetta Straneo
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-35, https://doi.org/10.5194/tc-2019-35, 2019
Revised manuscript not accepted
Short summary
Short summary
Atlantic Water flows towards the Arctic and under floating glaciers on Greenland. Observations in a rift on the 79 North Glacier show presence of such water with temperature of 1 °C at 600 m. We simulate how this warm water melts the floating ice. Melt rates are largest where the glacier starts floating, are smaller where the water rises, and increase linearly with rising ocean temperature. Our results improve the understanding of ocean processes driving melting of floating glaciers.
Hannu Valta, Ilari Lehtonen, Terhi K. Laurila, Ari Venäläinen, Mikko Laapas, and Hilppa Gregow
Adv. Sci. Res., 16, 31–37, https://doi.org/10.5194/asr-16-31-2019, https://doi.org/10.5194/asr-16-31-2019, 2019
Short summary
Short summary
A comparison of forest damage with windstorm intensity in Finland suggests that the volume of forest damage follows approximately a power relation as a function of wind gust speed with a power of ~10. This tentative estimate holds for typical windstorms having mainly westerly winds and affecting large areas in southern and central parts of Finland. The estimate can be utilized when preparing impact-based predictions of windstorms.
Antonio Sanchez-Roman, Gabriel Jorda, Gianmaria Sannino, and Damia Gomis
Ocean Sci., 14, 1547–1566, https://doi.org/10.5194/os-14-1547-2018, https://doi.org/10.5194/os-14-1547-2018, 2018
Short summary
Short summary
We explore the vertical transfers of heat, salt and mass between the inflowing and outflowing layers at the Strait of Gibraltar by using a 3-D model with very high spatial resolution that allows for a realistic representation of the exchange. Results show a significant transformation of the water mass properties along their path through the strait, mainly induced by the recirculation of water between layers, while mixing seems to have little influence on the heat and salt exchanged.
Johannes Eckstein, Roland Ruhnke, Stephan Pfahl, Emanuel Christner, Christopher Diekmann, Christoph Dyroff, Daniel Reinert, Daniel Rieger, Matthias Schneider, Jennifer Schröter, Andreas Zahn, and Peter Braesicke
Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, https://doi.org/10.5194/gmd-11-5113-2018, 2018
Short summary
Short summary
We present ICON-ART-Iso, an extension to the global circulation model ICON, which allows for the simulation of the stable isotopologues of water. The main advantage over other isotope-enabled models is its flexible design with respect to the number of tracers simulated. We compare the results of several simulations to measurements of different scale. ICON-ART-Iso is able to reasonably reproduce the measurements. It is a promising tool to aid in the investigation of the atmospheric water cycle.
Matthew D. K. Priestley, Helen F. Dacre, Len C. Shaffrey, Kevin I. Hodges, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 18, 2991–3006, https://doi.org/10.5194/nhess-18-2991-2018, https://doi.org/10.5194/nhess-18-2991-2018, 2018
Short summary
Short summary
This study investigates the role of the clustering of extratropical cyclones in driving wintertime wind losses across a large European region. To do this over 900 years of climate model data have been used and analysed. The main conclusion of this work is that cyclone clustering acts to increase wind-driven losses in the winter by 10 %–20 % when compared to the losses from a random series of cyclones, with this specifically being for the higher loss years.
Silvia Terzago, Elisa Palazzi, and Jost von Hardenberg
Nat. Hazards Earth Syst. Sci., 18, 2825–2840, https://doi.org/10.5194/nhess-18-2825-2018, https://doi.org/10.5194/nhess-18-2825-2018, 2018
Short summary
Short summary
This study proposes a modification to a stochastic downscaling method for precipitation, RainFARM, to improve the representation of the statistics of the daily precipitation at fine scales (1 km) in mountain areas. This method has been demonstrated in the Alps and it has been found to reconstruct small-scale precipitation distribution. It can be employed in a number of applications, including the analysis of extreme events and their statistics and hydrometeorological hazards.
Jennifer Schröter, Daniel Rieger, Christian Stassen, Heike Vogel, Michael Weimer, Sven Werchner, Jochen Förstner, Florian Prill, Daniel Reinert, Günther Zängl, Marco Giorgetta, Roland Ruhnke, Bernhard Vogel, and Peter Braesicke
Geosci. Model Dev., 11, 4043–4068, https://doi.org/10.5194/gmd-11-4043-2018, https://doi.org/10.5194/gmd-11-4043-2018, 2018
Short summary
Short summary
In this paper, we introduce the most up-to-date version of the flexible tracer framework for the ICOsahedral Nonhydrostatic model with
Aerosols and Reactive Trace gases (ICON-ART).
We performed multiple simulations using different ICON physics configurations for weather and climate with ART.
The flexible tracer framework within ICON-ART 2.1 suits the demands of a large variety of different applications ranging from numerical weather prediction to climate integrations.
Enrica Perra, Monica Piras, Roberto Deidda, Claudio Paniconi, Giuseppe Mascaro, Enrique R. Vivoni, Pierluigi Cau, Pier Andrea Marras, Ralf Ludwig, and Swen Meyer
Hydrol. Earth Syst. Sci., 22, 4125–4143, https://doi.org/10.5194/hess-22-4125-2018, https://doi.org/10.5194/hess-22-4125-2018, 2018
Reinhard Schiemann, Pier Luigi Vidale, Len C. Shaffrey, Stephanie J. Johnson, Malcolm J. Roberts, Marie-Estelle Demory, Matthew S. Mizielinski, and Jane Strachan
Hydrol. Earth Syst. Sci., 22, 3933–3950, https://doi.org/10.5194/hess-22-3933-2018, https://doi.org/10.5194/hess-22-3933-2018, 2018
Short summary
Short summary
A new generation of global climate models with resolutions between 50 and 10 km is becoming available. Here, we assess how well one such model simulates European precipitation. We find clear improvements in the mean precipitation pattern, and importantly also for extreme daily precipitation over 30 major European river basins. Despite remaining limitations, new high-resolution global models hold great promise for improved climate predictions of European precipitation at impact-relevant scales.
Farahnaz Khosrawi, Oliver Kirner, Gabriele Stiller, Michael Höpfner, Michelle L. Santee, Sylvia Kellmann, and Peter Braesicke
Atmos. Chem. Phys., 18, 8873–8892, https://doi.org/10.5194/acp-18-8873-2018, https://doi.org/10.5194/acp-18-8873-2018, 2018
Short summary
Short summary
An extensive assessment of the performance of the chemistry–climate model EMAC is given for Arctic winters 2009/2010 and 2010/2011. The EMAC simulations are compared to satellite observations. The comparisons between EMAC simulations and satellite observations show that model and measurements compare well for these two Arctic winters. However, differences between model and observations are found that need improvements in the model in the future.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Tiina Ervasti, Hilppa Gregow, Andrea Vajda, Terhi K. Laurila, and Antti Mäkelä
Adv. Sci. Res., 15, 99–106, https://doi.org/10.5194/asr-15-99-2018, https://doi.org/10.5194/asr-15-99-2018, 2018
Short summary
Short summary
An online survey was used to map the needs and preferences of the Finnish general public about extended-range forecasts and their presentation. Survey results guided the co-design process of novel extended-range forecasts in the project. The respondents considered that the tailored extended-range forecasts would be beneficial in planning activities, preparing for weather risks and scheduling everyday life. They also valued impact information higher than advice on how to prepare for the impacts.
Gillian D. Thornhill, Claire L. Ryder, Eleanor J. Highwood, Len C. Shaffrey, and Ben T. Johnson
Atmos. Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-5321-2018, https://doi.org/10.5194/acp-18-5321-2018, 2018
Short summary
Short summary
We investigated the impact on the regional climate of different amounts of smoke emission (aerosol) from the burning of vegetation in South America using a climate model. We looked at differences between high and low smoke emissions and found impacts from the higher smoke emissions on the amount of cloud cover, solar radiation reaching the surface, wind patterns and rainfall. This means the local climate may be affected if there is more deforestation and more smoke from burning of vegetation.
Neal Butchart, James A. Anstey, Kevin Hamilton, Scott Osprey, Charles McLandress, Andrew C. Bushell, Yoshio Kawatani, Young-Ha Kim, Francois Lott, John Scinocca, Timothy N. Stockdale, Martin Andrews, Omar Bellprat, Peter Braesicke, Chiara Cagnazzo, Chih-Chieh Chen, Hye-Yeong Chun, Mikhail Dobrynin, Rolando R. Garcia, Javier Garcia-Serrano, Lesley J. Gray, Laura Holt, Tobias Kerzenmacher, Hiroaki Naoe, Holger Pohlmann, Jadwiga H. Richter, Adam A. Scaife, Verena Schenzinger, Federico Serva, Stefan Versick, Shingo Watanabe, Kohei Yoshida, and Seiji Yukimoto
Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, https://doi.org/10.5194/gmd-11-1009-2018, 2018
Short summary
Short summary
This paper documents the numerical experiments to be used in phase 1 of the Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi), which was set up to improve the representation of the QBO and tropical stratospheric variability in global climate models.
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Atte Harjanne, Riina Haavisto, Heikki Tuomenvirta, and Hilppa Gregow
Adv. Sci. Res., 14, 293–304, https://doi.org/10.5194/asr-14-293-2017, https://doi.org/10.5194/asr-14-293-2017, 2017
Short summary
Short summary
Weather, climate and climate change can cause significant risks to businesses and public administration. By asking Finnish organizations about their weather and climate risk perceptions and management, this study aims to improve ways climate services can support in adapting to current and future climate. The results indicate that climate risk management is often de-centralized and relies on expert networks but that practices differ between actors.
Erwin Isaac Polanco, Amr Fleifle, Ralf Ludwig, and Markus Disse
Hydrol. Earth Syst. Sci., 21, 4907–4926, https://doi.org/10.5194/hess-21-4907-2017, https://doi.org/10.5194/hess-21-4907-2017, 2017
Short summary
Short summary
In this research, SWAT was used to model the upper Blue Nile Basin where comparisons between ground and CFSR data were done. Furthermore, this paper introduced the SWAT error index (SEI), an additional tool to measure the level of error of hydrological models. This work proposed an approach or methodology that can effectively be followed to create better and more efficient hydrological models.
Per Skougaard Kaspersen, Nanna Høegh Ravn, Karsten Arnbjerg-Nielsen, Henrik Madsen, and Martin Drews
Hydrol. Earth Syst. Sci., 21, 4131–4147, https://doi.org/10.5194/hess-21-4131-2017, https://doi.org/10.5194/hess-21-4131-2017, 2017
Silvia Terzago, Jost von Hardenberg, Elisa Palazzi, and Antonello Provenzale
The Cryosphere, 11, 1625–1645, https://doi.org/10.5194/tc-11-1625-2017, https://doi.org/10.5194/tc-11-1625-2017, 2017
Short summary
Short summary
The estimate of the current and future conditions of snow resources in mountain areas depends on the availability of reliable fine-resolution data sets and of climate models capable of properly representing snow processes and snow–climate interactions. This work considers the snow water equivalent data sets from remote sensing, reanalyses, regional and global climate models available for the Alps and explores their ability to provide a coherent view of the snowpack features and its changes.
Michael Weimer, Jennifer Schröter, Johannes Eckstein, Konrad Deetz, Marco Neumaier, Garlich Fischbeck, Lu Hu, Dylan B. Millet, Daniel Rieger, Heike Vogel, Bernhard Vogel, Thomas Reddmann, Oliver Kirner, Roland Ruhnke, and Peter Braesicke
Geosci. Model Dev., 10, 2471–2494, https://doi.org/10.5194/gmd-10-2471-2017, https://doi.org/10.5194/gmd-10-2471-2017, 2017
Short summary
Short summary
In this paper, the recently developed module for trace gas emissions in the online coupled modelling framework ICON-ART for atmospheric chemistry is presented. Algorithms for offline and online calculation of the emissions are described. The module is validated with ground-based as well as airborne measurements of acetone. It is shown that the module performs well and allows the simulation of annual cycles of emission-driven trace gases.
Otto Hyvärinen, Antti Mäkelä, Matti Kämäräinen, and Hilppa Gregow
Adv. Sci. Res., 14, 89–93, https://doi.org/10.5194/asr-14-89-2017, https://doi.org/10.5194/asr-14-89-2017, 2017
Short summary
Short summary
Finnish Meteorological Institute and Helen Ltd examined the feasibility of long-range forecasts (longer than two weeks) of temperature for needs of the energy sector in Helsinki, Finland. In this study, we examined the quality of Heating degree day (HDD) forecasts. As the forecasts we used UK Met Office seasonal forecasts. The long-range forecasts of monthly HDD showed some skill in Helsinki in winter 2015–2016, up to two months, especially if the very cold January is excluded.
Gianpiero Cossarini, Stefano Querin, Cosimo Solidoro, Gianmaria Sannino, Paolo Lazzari, Valeria Di Biagio, and Giorgio Bolzon
Geosci. Model Dev., 10, 1423–1445, https://doi.org/10.5194/gmd-10-1423-2017, https://doi.org/10.5194/gmd-10-1423-2017, 2017
Short summary
Short summary
The BFMCOUPLER (v1.0) is a coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations. The online coupling is based on an open-source code characterizd by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. The BFMCOUPLER code is released along with an idealized problem (a cyclonic gyre in a mid-latitude closed basin).
Johannes Eckstein, Roland Ruhnke, Andreas Zahn, Marco Neumaier, Ole Kirner, and Peter Braesicke
Atmos. Chem. Phys., 17, 2775–2794, https://doi.org/10.5194/acp-17-2775-2017, https://doi.org/10.5194/acp-17-2775-2017, 2017
Short summary
Short summary
Data on atmospheric trace gases have been collected with instruments on-board a commercial airliner for more than 10 years in the CARIBIC project. We investigate which species in the dataset can be used for a representative climatology, by comparing data from the chemistry–climate model EMAC along the flight paths to a larger set of model data. We find that long-lived species are captured quite well by the CARIBIC sample while this is not the case for more variable, shorter-lived species.
Matti Kämäräinen, Otto Hyvärinen, Kirsti Jylhä, Andrea Vajda, Simo Neiglick, Jaakko Nuottokari, and Hilppa Gregow
Nat. Hazards Earth Syst. Sci., 17, 243–259, https://doi.org/10.5194/nhess-17-243-2017, https://doi.org/10.5194/nhess-17-243-2017, 2017
Short summary
Short summary
Freezing rain is a high-impact wintertime weather phenomenon. The direct damage it causes to critical infrastructure (transportation, communication and energy) and forestry can be substantial. In this work a method for estimating the occurrence of freezing rain was evaluated and used to derive the climatology. The method was able to accurately reproduce the observed, spatially aggregated annual variability. The highest frequencies of freezing rain were found in eastern and central Europe.
Lars H. Smedsrud, Mari H. Halvorsen, Julienne C. Stroeve, Rong Zhang, and Kjell Kloster
The Cryosphere, 11, 65–79, https://doi.org/10.5194/tc-11-65-2017, https://doi.org/10.5194/tc-11-65-2017, 2017
Short summary
Short summary
Export of Arctic sea ice area southwards through the Fram Strait from 1935 to 2014 is calculated based on satellite radar images and surface pressure observations. The annual mean export is 880 000 km2, representing 10 % of the Arctic sea ice area. In recent years the export has been above 1 million km2, and there are positive trends over the last 30 years. Increased ice export during spring and summer contributes to more open water in September, and this correlations has increased over time.
Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke
Atmos. Chem. Phys., 16, 15619–15627, https://doi.org/10.5194/acp-16-15619-2016, https://doi.org/10.5194/acp-16-15619-2016, 2016
Short summary
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
Mingjin Tang, James Keeble, Paul J. Telford, Francis D. Pope, Peter Braesicke, Paul T. Griffiths, N. Luke Abraham, James McGregor, I. Matt Watson, R. Anthony Cox, John A. Pyle, and Markus Kalberer
Atmos. Chem. Phys., 16, 15397–15412, https://doi.org/10.5194/acp-16-15397-2016, https://doi.org/10.5194/acp-16-15397-2016, 2016
Short summary
Short summary
We have investigated for the first time the heterogeneous hydrolysis of ClONO2 on TiO2 and SiO2 aerosol particles at room temperature and at different relative humidities (RHs), using an aerosol flow tube. The kinetic data reported in our current and previous studies have been included in the UKCA chemistry–climate model to assess the impact of TiO2 injection on stratospheric chemistry and stratospheric ozone in particular.
Ilari Lehtonen, Matti Kämäräinen, Hilppa Gregow, Ari Venäläinen, and Heli Peltola
Nat. Hazards Earth Syst. Sci., 16, 2259–2271, https://doi.org/10.5194/nhess-16-2259-2016, https://doi.org/10.5194/nhess-16-2259-2016, 2016
Short summary
Short summary
We studied the impact of projected climate change on the risk of snow-induced forest damage in Finland. Although winters are projected to become milder over the whole of Finland, our results suggest than in eastern and northern Finland the risk may increase while in southern and western parts of the country it is projected to decrease. This indicates that there is increasing need to consider the potential of snow damage in forest management in eastern and northern Finland.
Ewa M. Bednarz, Amanda C. Maycock, N. Luke Abraham, Peter Braesicke, Olivier Dessens, and John A. Pyle
Atmos. Chem. Phys., 16, 12159–12176, https://doi.org/10.5194/acp-16-12159-2016, https://doi.org/10.5194/acp-16-12159-2016, 2016
Short summary
Short summary
Future trends in springtime Arctic ozone, and its chemical dynamical and radiative drivers, are analysed using a 7-member ensemble of chemistry–climate model integrations, allowing for a detailed assessment of interannual variability. Despite the future long-term recovery of Arctic ozone, there is large interannual variability and episodic reductions in springtime Arctic column ozone. Halogen chemistry will become a smaller but non-negligible driver of Arctic ozone variability over the century.
Markus Kunze, Peter Braesicke, Ulrike Langematz, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8695–8714, https://doi.org/10.5194/acp-16-8695-2016, https://doi.org/10.5194/acp-16-8695-2016, 2016
Khalil Karami, Peter Braesicke, Miriam Sinnhuber, and Stefan Versick
Atmos. Chem. Phys., 16, 8447–8460, https://doi.org/10.5194/acp-16-8447-2016, https://doi.org/10.5194/acp-16-8447-2016, 2016
Short summary
Short summary
We introduce a diagnostic tool to assess in a climatological framework the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR reanalysis data we demonstrate several problematic features of the refractive index of Rossby waves. We introduced the Rossby waves membership value function to calculate the optimal propagation conditions for Rossby waves. Sensitivity of our diagnostic tool to strong and weak vortex regimes are examined.
Peer Johannes Nowack, Nathan Luke Abraham, Peter Braesicke, and John Adrian Pyle
Atmos. Chem. Phys., 16, 4191–4203, https://doi.org/10.5194/acp-16-4191-2016, https://doi.org/10.5194/acp-16-4191-2016, 2016
Short summary
Short summary
Various forms of solar radiation management (SRM) have been proposed to counteract man-made climate change. However, all these countermeasures could have unintended side-effects. We add a novel perspective to this discussion by showing how atmospheric ozone changes under solar geoengineering could affect UV exposure and air pollution. This would have implications for human health and ecology. Atmospheric composition changes are therefore important to consider in the evaluation of any SRM scheme.
T. Krumpen, R. Gerdes, C. Haas, S. Hendricks, A. Herber, V. Selyuzhenok, L. Smedsrud, and G. Spreen
The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, https://doi.org/10.5194/tc-10-523-2016, 2016
Short summary
Short summary
We present an extensive data set of ground-based and airborne electromagnetic ice thickness measurements covering Fram Strait in summer between 2001 and 2012. An investigation of back trajectories of surveyed sea ice using satellite-based sea ice motion data allows us to examine the connection between thickness variability, ice age and source area. In addition, we determine across and along strait gradients in ice thickness and associated volume fluxes.
Antara Banerjee, Amanda C. Maycock, Alexander T. Archibald, N. Luke Abraham, Paul Telford, Peter Braesicke, and John A. Pyle
Atmos. Chem. Phys., 16, 2727–2746, https://doi.org/10.5194/acp-16-2727-2016, https://doi.org/10.5194/acp-16-2727-2016, 2016
I. Lehtonen, A. Venäläinen, M. Kämäräinen, H. Peltola, and H. Gregow
Nat. Hazards Earth Syst. Sci., 16, 239–253, https://doi.org/10.5194/nhess-16-239-2016, https://doi.org/10.5194/nhess-16-239-2016, 2016
Short summary
Short summary
The number of large forest fires in Finland will most likely increase during the twenty-first century in response to projected climate change. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to effective fire suppression. However, our results show considerable inter-model variability, demonstrating the large uncertainty related to the rate of the projected change in forest-fire danger.
F. Khosrawi, J. Urban, S. Lossow, G. Stiller, K. Weigel, P. Braesicke, M. C. Pitts, A. Rozanov, J. P. Burrows, and D. Murtagh
Atmos. Chem. Phys., 16, 101–121, https://doi.org/10.5194/acp-16-101-2016, https://doi.org/10.5194/acp-16-101-2016, 2016
Short summary
Short summary
Our sensitivity studies based on air parcel trajectories confirm that Polar stratospheric cloud (PSC) formation is quite sensitive to water vapour and temperature changes. Considering water vapour time series from satellite measurements we do not find a consistent, significant trend in water vapour in the lower stratosphere during the past 15 years (2000–2014). Thus, the severe dentrification observed in 2010/2011 cannot be directly related to increases in stratospheric water vapour.
W. J. McKiver, G. Sannino, F. Braga, and D. Bellafiore
Ocean Sci., 12, 51–69, https://doi.org/10.5194/os-12-51-2016, https://doi.org/10.5194/os-12-51-2016, 2016
Short summary
Short summary
First modeling work comparing SHYFEM and MITgcm performance in the north Adriatic Sea; the treatment of heat/mass fluxes at the surface affects the models skill to reproduce coastal processes; high resolution is needed close to the coast, while lower resolution in the offshore is adequate to capture the dense water event; correct river discharges and temperature are vital for the reproduction of estuarine dynamics; non-hydrostatic processes do not influence the dense water formation.
K. Karami, P. Braesicke, M. Kunze, U. Langematz, M. Sinnhuber, and S. Versick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33283-2015, https://doi.org/10.5194/acpd-15-33283-2015, 2015
Revised manuscript has not been submitted
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
M. H. Halvorsen, L. H. Smedsrud, R. Zhang, and K. Kloster
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-4205-2015, https://doi.org/10.5194/tcd-9-4205-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
A new and updated timeseries of Fram Strait sea ice area export from 1979 - 2013 shows an overall increase until today. Spring and summer ice area export increases more (14% per decade) than in autumn and winter, and these export anomalies have a large influence on the following September mean ice extent.
A. K. Kaiser-Weiss, F. Kaspar, V. Heene, M. Borsche, D. G. H. Tan, P. Poli, A. Obregon, and H. Gregow
Adv. Sci. Res., 12, 187–198, https://doi.org/10.5194/asr-12-187-2015, https://doi.org/10.5194/asr-12-187-2015, 2015
Short summary
Short summary
Wind speed measured at the German stations correlate well with reanalysis fields. Monthly means from two global reanalyses (ERA-20C, ERA-Interim) and one regional reanalysis (COSMO-REA6) were analysed and correlate well for the majority of the German stations. Thus we conclude that the monthly and seasonal anomalies recorded at these stations can be understood as representative for a spatial area comparable to the resolution of the reanalyses, at least for the recent years.
P. Jokinen, A. Vajda, and H. Gregow
Adv. Sci. Res., 12, 97–101, https://doi.org/10.5194/asr-12-97-2015, https://doi.org/10.5194/asr-12-97-2015, 2015
Short summary
Short summary
Emergency rescue data and weather reanalysis data were combined to study the spatial and decadal characteristics of potential forest damage days in Finland due to windstorms. The most prone area for damage days was the south-western part of Finland. Results also indicated a lull period during the 1990s compared to the 1980s and 2000s, albeit no trend was evident. The study highlighted the importance of not only focusing on wind speeds, but also soil conditions.
H. Gregow, P. Poli, H. M. Mäkelä, K. Jylhä, A. K. Kaiser-Weiss, A. Obregon, D. G. H. Tan, S. Kekki, and F. Kaspar
Adv. Sci. Res., 12, 63–67, https://doi.org/10.5194/asr-12-63-2015, https://doi.org/10.5194/asr-12-63-2015, 2015
Short summary
Short summary
Many users of climate information are unaware of the availability of reanalysis feedback data and input observations, and uptake of feedback data is rather low. The most important factors limiting the use of this data is that the users feel that there is no easy interface to get the data or they do not find it at all. The relevant communities should invest resources to develop tools and provide training to bridge the gap between current capabilities and comprehensive exploitation of the data.
O. Hyvärinen, L. Mtilatila, K. Pilli-Sihvola, A. Venäläinen, and H. Gregow
Adv. Sci. Res., 12, 31–36, https://doi.org/10.5194/asr-12-31-2015, https://doi.org/10.5194/asr-12-31-2015, 2015
Short summary
Short summary
We assessed the quality of the seasonal precipitation forecasts issued by Regional Climate Outlook Forum for Malawi and Zambia. The forecasts, issued in August, are of rainy season rainfall accumulations for early and late season. The forecasts are rather well-calibrated, but cannot discriminate between different events. But these results can be too pessimistic, because forecasts have gone through much development lately, and forecasts using current methodology might have performed better.
A. Orr, J. S. Hosking, L. Hoffmann, J. Keeble, S. M. Dean, H. K. Roscoe, N. L. Abraham, S. Vosper, and P. Braesicke
Atmos. Chem. Phys., 15, 1071–1086, https://doi.org/10.5194/acp-15-1071-2015, https://doi.org/10.5194/acp-15-1071-2015, 2015
J. Keeble, P. Braesicke, N. L. Abraham, H. K. Roscoe, and J. A. Pyle
Atmos. Chem. Phys., 14, 13705–13717, https://doi.org/10.5194/acp-14-13705-2014, https://doi.org/10.5194/acp-14-13705-2014, 2014
X. Yang, N. L. Abraham, A. T. Archibald, P. Braesicke, J. Keeble, P. J. Telford, N. J. Warwick, and J. A. Pyle
Atmos. Chem. Phys., 14, 10431–10438, https://doi.org/10.5194/acp-14-10431-2014, https://doi.org/10.5194/acp-14-10431-2014, 2014
J. F. Roberts, A. J. Champion, L. C. Dawkins, K. I. Hodges, L. C. Shaffrey, D. B. Stephenson, M. A. Stringer, H. E. Thornton, and B. D. Youngman
Nat. Hazards Earth Syst. Sci., 14, 2487–2501, https://doi.org/10.5194/nhess-14-2487-2014, https://doi.org/10.5194/nhess-14-2487-2014, 2014
A. Banerjee, A. T. Archibald, A. C. Maycock, P. Telford, N. L. Abraham, X. Yang, P. Braesicke, and J. A. Pyle
Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, https://doi.org/10.5194/acp-14-9871-2014, 2014
M. J. Tang, P. J. Telford, F. D. Pope, L. Rkiouak, N. L. Abraham, A. T. Archibald, P. Braesicke, J. A. Pyle, J. McGregor, I. M. Watson, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014, https://doi.org/10.5194/acp-14-6035-2014, 2014
M. Zygmuntowska, P. Rampal, N. Ivanova, and L. H. Smedsrud
The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, https://doi.org/10.5194/tc-8-705-2014, 2014
F. M. O'Connor, C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi, G. A. Folberth, M. G. Sanderson, P. J. Telford, A. Voulgarakis, P. J. Young, G. Zeng, W. J. Collins, and J. A. Pyle
Geosci. Model Dev., 7, 41–91, https://doi.org/10.5194/gmd-7-41-2014, https://doi.org/10.5194/gmd-7-41-2014, 2014
M. J. Muerth, B. Gauvin St-Denis, S. Ricard, J. A. Velázquez, J. Schmid, M. Minville, D. Caya, D. Chaumont, R. Ludwig, and R. Turcotte
Hydrol. Earth Syst. Sci., 17, 1189–1204, https://doi.org/10.5194/hess-17-1189-2013, https://doi.org/10.5194/hess-17-1189-2013, 2013
J. A. Velázquez, J. Schmid, S. Ricard, M. J. Muerth, B. Gauvin St-Denis, M. Minville, D. Chaumont, D. Caya, R. Ludwig, and R. Turcotte
Hydrol. Earth Syst. Sci., 17, 565–578, https://doi.org/10.5194/hess-17-565-2013, https://doi.org/10.5194/hess-17-565-2013, 2013
P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle
Geosci. Model Dev., 6, 161–177, https://doi.org/10.5194/gmd-6-161-2013, https://doi.org/10.5194/gmd-6-161-2013, 2013
L. Guo, E. J. Highwood, L. C. Shaffrey, and A. G. Turner
Atmos. Chem. Phys., 13, 1521–1534, https://doi.org/10.5194/acp-13-1521-2013, https://doi.org/10.5194/acp-13-1521-2013, 2013
V. A. Alexeev, V. V. Ivanov, R. Kwok, and L. H. Smedsrud
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-245-2013, https://doi.org/10.5194/tcd-7-245-2013, 2013
Revised manuscript not accepted
Cited articles
Adler, C., Palazzi, E., Kulonen, A., Balsiger, J., Colangeli, G., Cripe, D., Forsythe,
N., Goss-Durant, G., Guigoz, Y., Krauer, J., Payne, D., Pepin, N., Peralvo, M., Romero, J., Sayre, R., Shahgedanova, M.,
Weingartner, R., and Zebisch, M.: Monitoring Mountains in a Changing World: New Horizons for the
Global Network for Observations and Information on Mountain Environments
(GEO-GNOME), Mt. Res. Dev., 38, 265–269, 2018.
ECRA: Minutes of the 3rd ECRA-Meeting, internal document, 21 January 2011, ECRA
Secretariat, Brussels, 2011a.
ECRA: 1st Executive Committee meeting of the European Climate Research
Alliance, 5 October 2011, ECRA Secretariat, Brussels, Minutes of the Meeting,
available at:
http://www.ecra-climate.eu/about-us/executive-committee(internal area, last access: 9 May 2018),
2011b.
ECRA: Participation ECRA General Assembly 25–26 March 2015, List of
Participants, Internal document of the ECRA Secretariat, ECRA Secretariat,
Brussels, 2015.
ECRA: Participation ECRA General Assembly 7–8 March 2017, List of
Participants, Internal document of the ECRA Secretariat, Brussels, 2017.
ECRA: Version 5 of the ECRA Governing Document, to be ratified by the 16th
Executive Committee Meeting in September 2019, ECRA Secretariat, Brussels, Belgium, 2018.
Freepngimg.com: Earth symbol in Illustration 1 available at: http://www.freepngimg.com/png/13540-earth-png-hd, last access: 3 May 2018.
Gregow, H., Jylhä, K., Mäkelä, H., Aalto, J., Manninen, T., Karlsson, P., Kaiser-Weiss, A.,
Kaspar, F., Poli, P., Tan, D., Obregon, A., and Su, Z.: Worldwide survey of awareness and needs concerning reanalyses, and
respondents' views on climate services, B. Am. Meteorol. Soc., 97,
1461–1473, https://doi.org/10.1175/BAMS-D-14-00271.1, 2015.
Gregow, H., Muzaffer, E. A., and Laaksonen, A.: Increasing large scale
windstorm damage in Western, Central and Northern European forests,
1951–2010, Scientific Reports, available at: http://rdcu.be/q66j (last
access: 10 October 2018), 2017.
Harjanne, A., Haavisto, R., Tuomenvirta, H, and Gregow, H.: Risk management
perspective for climate service development – Results from a study on
Finnish organizations, Adv. Sci. Res., 14, 293–304, https://doi.org/10.5194/asr-14-293-2017, 2017.
JPI Climate: Joint Programming Initiative Climate Launch Event report,
available at:
http://www.jpi-climate.eu/media/default.aspx/emma/org/10826603/JPI_Launch_Event_Brussels_FINAL.pdf
(last access: 5 May 2018), 2012.
Kämäräinen, M., Hyvärinen, O., Jylhä, K., Vajda, A.,
Neiglick, S., Nuottokari, J., and Gregow, H.: A method to estimate freezing
rain climatology from ERA-Interim reanalysis over Europe, Nat. Hazards Earth
Syst. Sci., 17, 243–259, https://doi.org/10.5194/nhess-17-243-2017, 2017.
Lehtonen, I., Venäläinen, A., Kämäräinen, M., Peltola,
H., and Gregow, H.: Risk of large-scale fires in boreal forests of Finland
under changing climate, Nat. Hazards Earth Syst. Sci., 16, 239–253,
https://doi.org/10.5194/nhess-16-239-2016, 2016a.
Lehtonen, I., Kämäräinen, M., Gregow, H., Venäläinen, A.,
and Peltola, H.: Heavy snow loads in Finnish forests respond regionally
asymmetrically to projected climate change, Nat. Hazards Earth Syst. Sci.,
16, 2259-2271, https://doi.org/10.5194/nhess-16-2259-2016,
2016b.
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
The European Climate Research Alliance is a bottom-up association of European research...