Bathymetric maps from multi-temporal analysis of Sentinel-2 data: the case study of Limassol, Cyprus
Evagoras Evagorou
CORRESPONDING AUTHOR
Department of Civil Engineering and Geomatics, School of Engineering
and Technology, Cyprus University of Technology, 30 Arch. Kyprianos
Str., 3036 Limassol, Cyprus
Christodoulos Mettas
Department of Civil Engineering and Geomatics, School of Engineering
and Technology, Cyprus University of Technology, 30 Arch. Kyprianos
Str., 3036 Limassol, Cyprus
Athos Agapiou
Department of Civil Engineering and Geomatics, School of Engineering
and Technology, Cyprus University of Technology, 30 Arch. Kyprianos
Str., 3036 Limassol, Cyprus
Kyriacos Themistocleous
Department of Civil Engineering and Geomatics, School of Engineering
and Technology, Cyprus University of Technology, 30 Arch. Kyprianos
Str., 3036 Limassol, Cyprus
Diofantos Hadjimitsis
Department of Civil Engineering and Geomatics, School of Engineering
and Technology, Cyprus University of Technology, 30 Arch. Kyprianos
Str., 3036 Limassol, Cyprus
Related authors
No articles found.
Dimitrios Skarlatos, Branka Cuca, Georgios Kafataris, Mattia Previtali, and Athos Agapiou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 425–430, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-425-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-425-2024, 2024
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
K. Themistocleous and M. Prodromou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 505–510, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-505-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-505-2023, 2023
G. Giannarakis, I. Tsoumas, S. Neophytides, C. Papoutsa, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1379–1384, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, 2023
M. Tzouvaras, S. Alatza, M. Prodromou, C. Theocharidis, K. Fotiou, A. Argyriou, C. Loupasakis, A. Apostolakis, Z. Pittaki, M. Kaskara, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1581–1587, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, 2023
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
A. Agapiou, Y. Aktas, L. Barazzetti, A. Costa, B. Cuca, D. D’Ayala, N. Kyriakides, P. Kyriakidis, V. Lysandrou, D. Oreni, M. Previtali, D. Skarlatos, A. Tavares, and M. Vlachos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 27–32, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, 2023
M. Prodromou, D. Cerra, K. Themistocleous, G. Schreier, T. Krauss, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 263–269, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, 2023
Thomas Dimopoulos, Hristos Tyralis, Nikolaos P. Bakas, and Diofantos Hadjimitsis
Adv. Geosci., 45, 377–382, https://doi.org/10.5194/adgeo-45-377-2018, https://doi.org/10.5194/adgeo-45-377-2018, 2018
Short summary
Short summary
The paper examines a machine learning algorithm (Random Forests) in comparison with Multivariate Linear Regression, for a data-set of 3500 transactions of residential apartments in Nicosia District in Cyprus. The methodology suggested, indicated high accuracy of the Random Forests Method, that can be applied in automated valuation models and CAMA systems.
George Melillos, Athos Agapiou, Silas Michaelides, and Diofantos G. Hadjimitsis
Adv. Geosci., 45, 335–342, https://doi.org/10.5194/adgeo-45-335-2018, https://doi.org/10.5194/adgeo-45-335-2018, 2018
Short summary
Short summary
Field spectroscopy has been used, in order to study possible differences in the spectral signatures of vegetation so to be used for the systematic monitoring of military landscapes that comprise underground military structures. In this paper, underground military structures over vegetated areas were monitored, using both ground and satellite remote sensing data. Several ground measurements have been carried out in military areas, throughout the phenological cycle of plant growth.
Maroula N. Alverti, Kyriakos Themistocleous, Phaedon C. Kyriakidis, and Diofantos G. Hadjimitsis
Adv. Geosci., 45, 305–320, https://doi.org/10.5194/adgeo-45-305-2018, https://doi.org/10.5194/adgeo-45-305-2018, 2018
Short summary
Short summary
The scientific objective is to find a simple understandable model linking human smart characteristics to a group of socio-demographic and urban environment indices, applied to the case of Limassol Urban Complex, Cyprus. The results reveal that the human smart characteristics are significantly correlated with demographic dynamics and built infrastructure characteristics. For instance creativity and open-mindedness appear in most densely urban areas.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Argyro Nisantzi, Stavros Solomos, George Kallos, and Diofantos G. Hadjimitsis
Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, https://doi.org/10.5194/acp-16-13711-2016, 2016
K. Themistocleous, A. Agapiou, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W2, 45–49, https://doi.org/10.5194/isprs-archives-XLII-2-W2-45-2016, https://doi.org/10.5194/isprs-archives-XLII-2-W2-45-2016, 2016
D. D. Alexakis, M. G. Grillakis, A. G. Koutroulis, A. Agapiou, K. Themistocleous, I. K. Tsanis, S. Michaelides, S. Pashiardis, C. Demetriou, K. Aristeidou, A. Retalis, F. Tymvios, and D. G. Hadjimitsis
Nat. Hazards Earth Syst. Sci., 14, 413–426, https://doi.org/10.5194/nhess-14-413-2014, https://doi.org/10.5194/nhess-14-413-2014, 2014
Cited articles
Adler-Golden, S. M., Acharya, P. K., Berk, A., Matthew, M. W., and
Gorodetzky, D.: Remote bathymetry of the littoral zone from AVIRIS, LASH,
and QuickBird imagery, Trans. Geosci. Remote Sens., 43, 337–347,
https://doi.org/10.1109/TGRS.2004.841246, 2005.
Agapiou, A., Hadjimitsis, D. G., Papoutsa, C., Alexakis, D. D., and
Papadavid, G.: The Importance of Accounting for Atmospheric Effects in the
Application of NDVI and Interpretation of Satellite Imagery Supporting
Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos
Sites in Cyprus, Remote Sens., 3, 2605–2629, https://doi.org/10.3390/rs3122605,
2011.
Chybicki, A.: Mapping South Baltic Near-Shore Bathymetry Using Sentinel-2
Observations, Polish Marit. Res., 24, 15–25, https://doi.org/10.1515/pomr-2017-0086,
2017.
Conger, C. L., Hochberg, E. J., Fletcher, C. H., and Atkinson, M. J.:
Decorrelating remote sensing color bands from bathymetry in optically
shallow waters, IEEE T. Geosci. Remote, 44, 1655–1660,
https://doi.org/10.1109/TGRS.2006.870405, 2006.
Dekker, A., Brando, V., Anstee, J., Fyfe, S., Malthus, T., and Karpouzli, E.:
Remote Sensing of Seagrass Ecosystems: Use of Spaceborne and Airborne
Sensors, in Seagrasses: Biology, Ecology and Conservation, pp. 347–359,
Springer Netherlands, Dordrecht, 2007.
DLS: Data from Department of Land Surveyors, Dep. L. Surv., available at:
http://portal.dls.moi.gov.cy/en-us/Pages/The-Department-of-Lands-and-Surveys-Web-Portal.aspx
(last access: 17 May 2018), 2014.
DoF: Department of Fisheries and Marine Research: Initial Assessment of the
Marine Environment of Cyprus, Part I – Characteristics Nicosia, Nicosia,
2012.
Ehses, J. S. and Rooney, J. J.: Depth Derivation Using Multispectral
WorldView-2 Satellite Imagery, NOAA Tech. Memo. NMFS-PIFSC-46, (June), 24,
https://doi.org/10.7289/V5668B40, 2015.
ESA: SENTINEL-2 User Handbook, 1st Edm., available at:
https://earth.esa.int/documents/247904/685211/Sentinel-2_User_Handbook (last access: 24 July 2018), 2013.
Gao, J.: Bathymetric mapping by means of remote sensing: methods, accuracy
and limitations, Prog. Phys. Geogr., 33, 103–116,
https://doi.org/10.1177/0309133309105657, 2009.
Hadjimitsis, D., Agapiou, A., Alexakis, D., and Sarris, A.: Exploring natural
and anthropogenic risk for cultural heritage in Cyprus using remote sensing
and GIS, Int. J. Digit. Earth, 6, 115–142,
https://doi.org/10.1080/17538947.2011.602119, 2013.
Hadjimitsis, D. G., Hadjimitsis, M. G., Toulios, L., and Clayton, C.: Use of
space technology for assisting water quality assessment and monitoring of
inland water bodies, Phys. Chem. Earth, 35, 115–120,
https://doi.org/10.1016/J.PCE.2010.03.033, 2010.
Irish, J. L. and Lillycrop, W. J.: Scanning laser mapping of the coastal
zone: the SHOALS system, ISPRS J. Photogramm. Remote Sens., 54, 123–129,
https://doi.org/10.1016/S0924-2716(99)00003-9, 1999.
Jupp, D.: Background and Extensions to Depth of Penetration (DOP) Mapping in
Shallow Coastal Waters, Proceeding Symp. Remote Sens. Coast. Zo. Queensl.,
available at: https://ci.nii.ac.jp/naid/10003995403/ (last access: 5 December 2018), 1988.
Kabiri, K.: Discovering optimum method to extract depth information for
nearshore coastal waters from sentinel-2a imagery-case study: nayband bay,
iran, ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,
XLII-4/W4, 105–110, https://doi.org/10.5194/isprs-archives-XLII-4-W4-105-2017, 2017.
Kearns, T. A. and Breman, J.: Bathymetry-the art and science of seafloor
modeling for modern applications, in: Ocean globe, 1–37,
available at:
http://visualsoundings.org/wp-content/uploads/2017/02/ocean_globe.pdf (last access: 6 December 2018), 2010.
Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., and Patch, J. S.:
Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths
and water properties by optimization, available at:
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-38-18-3831 (last
access: 4 December 2018), 1999.
Lyzenga, D.: Remote sensing of bottom reflectance and water attenuation
parameters in shallow water using aircraft and Landsat data Remote sensing
of bottom reflectance and water attenuation parameters in shallow water
using air, Int. J. Remote Sens., 2, 71–82,
https://doi.org/10.1080/01431168108948342, 1980.
Lyzenga, D. R.: Passive remote sensing techniques for mapping water depth
and bottom features, Appl. Opt., 17, 379–383,
https://doi.org/10.1364/AO.17.000379, 1978.
Lyzenga, D. R., Malinas, N. P., and Tanis, F. J.: Multispectral bathymetry
using a simple physically based algorithm, IEEE T. Geosci. Remote,
44, 2251–2259, https://doi.org/10.1109/TGRS.2006.872909, 2006.
Maritorena, S., Morel, A., and Gentili, B.: Diffuse reflectance of oceanic
shallow waters: Influence of water depth and bottom albedo, Limnol.
Oceanogr., 39, 1689–1703, https://doi.org/10.4319/lo.1994.39.7.1689, 1994.
McCaffrey, E.: A review of the bathymetric swath survey system,
International Hydrographic Bureau, available at:
https://journals.lib.unb.ca/index.php/ihr/article/view/23587/27360 (last
access:
24 July 2018), 1981.
Misra, A., Vojinovic, Z., Ramakrishnan, B., Luijendijk, A., and Ranasinghe,
R.: Shallow water bathymetry mapping using Support Vector Machine (SVM)
technique and multispectral imagery, Int. J. Remote Sens., 39, 4431–4450,
https://doi.org/10.1080/01431161.2017.1421796, 2018.
Muirhead, K. and Cracknell, A. P.: Airborne lidar bathymetry, Int. J. Remote
Sens., 7, 597–614, https://doi.org/10.1080/01431168608954714, 1986.
Ogawa, H., Oyakawa, K., Kawai, K., Ozawa, H., Yajima, H., Shirane, H.,
Yamano, H., Hirata, N., Iwamoto, N., Ono, T., Tomizawa, S., Matsumoto, Y.
and Yamakawa, S.: Airborne lidar bathymetry, International Hydrographic
Bureau, available at:
https://journals.lib.unb.ca/index.php/ihr/article/view/26300/1882519053
(last access: 24 July 2018), 2017.
Papoutsa, C., Hadjimitsis, D. G., and Alexakis, D. D.: Coastal water quality
near to desalination project in Cyprus using Earth observation, International
Society for Optics and Photonics 8181, Earth Resources and Environmental
Remote Sensing/GIS Applications II, p. 81810T, https://doi.org/10.1117/12.898361, 2011.
Philpot, W. D.: Bathymetric mapping with passive multispectral imagery,
Appl. Opt., 28, 1569–1578, https://doi.org/10.1364/AO.28.001569, 1989.
Pushparaj, J. and Hegde, A. V.: Estimation of bathymetry along the coast of
Mangaluru using Landsat-8 imagery, Int. J. Ocean Clim. Syst., 8, 71–83,
https://doi.org/10.1177/1759313116679672, 2017.
Said, N. M., Mahmud, R., and Hasan, R. C.: Satellite-derived bathymetry:
accuracy assessment on depths derivation algorithm for shallow water area,
ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLII-4/W5,
159–164, https://doi.org/10.5194/isprs-archives-XLII-4-W5-159-2017, 2017.
Sánchez-Carnero, N., Aceña, S., Rodríguez-Pérez, D.,
Couñago, E., Fraile, P., and Freire, J.: Fast and low-cost method for
VBES bathymetry generation in coastal areas, Estuar. Coast. Shelf Sci., 114,
175–182, https://doi.org/10.1016/J.ECSS.2012.08.018, 2012.
Setiawan, I. E., Yuwono, D. M., Siregar, V. P., and Pramono, G. H.: The Study
of Sea Bottom Morphology and Bathymetric Mapping Using Worldview-2 Imagery,
in: Seminar Proceeding, 143–149, available at:
https://repository.ipb.ac.id/jspui/bitstream/123456789/65453/1/
Iwan E. Setiawan
%2C vincentius siregar.pdf, 2013.
Setiawan, K. T., Adawiah, S. W., Marini, Y., and Winarso, G.: Bathymetry Data
Extraction Analysis Using Landsat 8 Data, Int. J. Remote Sens. Earth Sci.,
13, 79–86, https://doi.org/10.30536/j.ijreses.2016.v13.a2448, 2017.
Stumpf, R. P., Holderied, K., and Sinclair, M.: Determination of water depth
with high-resolution satellite imagery over variable bottom types, Limnol.
Oceanogr., 48, 547–556,
https://doi.org/10.4319/lo.2003.48.1_part_2.0547, 2003.
Sutanto: Penginderaan Jauh Jilid 2, Gadjah Mada Press, Yogyakarta, 1992.
Traganos, D. and Reinartz, P.: Mapping Mediterranean seagrasses with
Sentinel-2 imagery, Mar. Pollut. Bull., 134, 197–209,
https://doi.org/10.1016/j.marpolbul.2017.06.075, 2017.
Traganos, D., Poursanidis, D., Aggarwal, B., Chrysoulakis, N., and Reinartz,
P.: Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth
Engine and Sentinel-2, Remote Sens., 10, 859, https://doi.org/10.3390/rs10060859,
2018.
Short summary
Freely and open distributed optical satellite images used to obtain bathymetric data for shallow waters based on timeseries analysis of multispectral Sentinel-2 datasets. The ratio transform algorithm was implemented for twelve monthly images covering a year. Bathymetric maps were generated and compared with LIDAR measurements. The results showed that bathymetry can be obtained from satellite data within a Root Mean Square Error while more accurate results were generated during the summer.
Freely and open distributed optical satellite images used to obtain bathymetric data for shallow...