Articles | Volume 45
https://doi.org/10.5194/adgeo-45-397-2019
https://doi.org/10.5194/adgeo-45-397-2019
09 Jan 2019
 | 09 Jan 2019

Bathymetric maps from multi-temporal analysis of Sentinel-2 data: the case study of Limassol, Cyprus

Evagoras Evagorou, Christodoulos Mettas, Athos Agapiou, Kyriacos Themistocleous, and Diofantos Hadjimitsis

Related authors

Monitoring cultural heritage sites at risk using citizen engagement through crowdsourcing
Kyriacos Themistocleous, Valentinos Evripidou, and Kyriakos Toumbas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1435–1440, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1435-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1435-2025, 2025
Integration of Earth Observation and Geospatial Datasets for the Development of a National Multi-hazard Risk Assessment in Cyprus
Marios Tzouvaras, Constantinos Panagiotou, Nicholas Kyriakides, Maria Prodromou, Panagiotis Vasiliou, Marina Doukanari, Kyriaki Fotiou, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1485–1491, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025, 2025
Synergistic use of ground-based multi-instrument platforms and satellite recordings to investigate the aerosol-cloud-dynamic interaction in Cyprus
Hossein Panahifar, Maria Poutli, George Kotsias, Argyro Nisantzi, Silas Michaelides, Diofantos Hadjimitsis, Patric Seifert, Albert Ansmann, and Rodanthi-Elisavet Mamouri
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1153–1158, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025, 2025
The contribution of remote sensing for the development of a Green-Holistic IoT Platform for Forest Management and Monitoring: Reforestation and Deforestation Modules
Maria Prodromou, Marios Tzouvaras, Christodoulos Mettas, Andreas Konstantinidis, Andreas Pamboris, Iasonas Iasonos, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1215–1222, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025, 2025
Remote Sensing of Grasslands: Performance Comparison of Radar and Optical Data in Machine Learning Classification
Konstantinos Christofi, Charalambos Chrysostomou, Iason Tsardanidis, Michalis Mavrovouniotis, Giorgia Guerrisi, Charalampos Kontoes, and Diofantos G. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 295–300, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025, 2025

Cited articles

Adler-Golden, S. M., Acharya, P. K., Berk, A., Matthew, M. W., and Gorodetzky, D.: Remote bathymetry of the littoral zone from AVIRIS, LASH, and QuickBird imagery, Trans. Geosci. Remote Sens., 43, 337–347, https://doi.org/10.1109/TGRS.2004.841246, 2005. 
Agapiou, A., Hadjimitsis, D. G., Papoutsa, C., Alexakis, D. D., and Papadavid, G.: The Importance of Accounting for Atmospheric Effects in the Application of NDVI and Interpretation of Satellite Imagery Supporting Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos Sites in Cyprus, Remote Sens., 3, 2605–2629, https://doi.org/10.3390/rs3122605, 2011. 
Chybicki, A.: Mapping South Baltic Near-Shore Bathymetry Using Sentinel-2 Observations, Polish Marit. Res., 24, 15–25, https://doi.org/10.1515/pomr-2017-0086, 2017. 
Conger, C. L., Hochberg, E. J., Fletcher, C. H., and Atkinson, M. J.: Decorrelating remote sensing color bands from bathymetry in optically shallow waters, IEEE T. Geosci. Remote, 44, 1655–1660, https://doi.org/10.1109/TGRS.2006.870405, 2006. 
Dekker, A., Brando, V., Anstee, J., Fyfe, S., Malthus, T., and Karpouzli, E.: Remote Sensing of Seagrass Ecosystems: Use of Spaceborne and Airborne Sensors, in Seagrasses: Biology, Ecology and Conservation, pp. 347–359, Springer Netherlands, Dordrecht, 2007. 
Download
Short summary
Freely and open distributed optical satellite images used to obtain bathymetric data for shallow waters based on timeseries analysis of multispectral Sentinel-2 datasets. The ratio transform algorithm was implemented for twelve monthly images covering a year. Bathymetric maps were generated and compared with LIDAR measurements. The results showed that bathymetry can be obtained from satellite data within a Root Mean Square Error while more accurate results were generated during the summer.
Share