Tropospheric delay performance for GNSS integrated water vapor estimation by using GPT2w model, ECMWF's IFS operational model and in situ meteorological data
Christina Oikonomou
CORRESPONDING AUTHOR
Frederick Research Center, Nicosia, 1303, Cyprus
Filippos Tymvios
Cyprus Department of Meteorology, Nicosia, Cyprus
The Cyprus Institute, Nicosia, 2121, Cyprus
Christos Pikridas
Aristotle University of Thessaloniki, Department of Geodesy and Surveying, Thessaloniki, 54124, Greece
Stylianos Bitharis
Aristotle University of Thessaloniki, Department of Geodesy and Surveying, Thessaloniki, 54124, Greece
Kyriakos Balidakis
German Research Centre for Geosciences, Space Geodetic Techniques, Potsdam, 14473, Germany
Silas Michaelides
The Cyprus Institute, Nicosia, 2121, Cyprus
Haris Haralambous
Frederick Research Center, Nicosia, 1303, Cyprus
Frederick University, Nicosia, 1036, Cyprus
Demetris Charalambous
Cyprus Department of Meteorology, Nicosia, Cyprus
The Cyprus Institute, Nicosia, 2121, Cyprus
Related authors
No articles found.
Chaiyaporn Kitpracha, Robert Heinkelmann, Markus Ramatschi, Kyriakos Balidakis, Benjamin Männel, and Harald Schuh
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-238, https://doi.org/10.5194/amt-2022-238, 2022
Preprint withdrawn
Short summary
Short summary
In this study, we expected to learn what are the potential effects of GNSS atmospheric delays from this unique experiment. The results show that the instrument effects on GNSS zenith delays were mitigated by using the same instrument. The radome causes unexpected bias of GNSS zenith delays in this study. In order to calibrate the instrumental effects, we set up the GNSS co-location site experiment to demonstrate calibrating GNSS instrumental effects.
M. Lourakis, M. Pateraki, I.-A. Karolos, C. Pikridas, and P. Patias
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 55–62, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-55-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-55-2020, 2020
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019, https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
Short summary
We provide an analysis of processing setting impacts on tropospheric gradients estimated from GNSS observation processing. These tropospheric gradients are related to water vapour distribution in the troposphere and therefore can be helpful in meteorological applications.
Silas Michaelides and Charalampos Kontoes
Adv. Geosci., 47, 17–19, https://doi.org/10.5194/adgeo-47-17-2019, https://doi.org/10.5194/adgeo-47-17-2019, 2019
George Melillos, Athos Agapiou, Silas Michaelides, and Diofantos G. Hadjimitsis
Adv. Geosci., 45, 335–342, https://doi.org/10.5194/adgeo-45-335-2018, https://doi.org/10.5194/adgeo-45-335-2018, 2018
Short summary
Short summary
Field spectroscopy has been used, in order to study possible differences in the spectral signatures of vegetation so to be used for the systematic monitoring of military landscapes that comprise underground military structures. In this paper, underground military structures over vegetated areas were monitored, using both ground and satellite remote sensing data. Several ground measurements have been carried out in military areas, throughout the phenological cycle of plant growth.
Cited articles
Balidakis, K., Nilsson, T., Zus, F., Glaser, S., Heinkelmann, R., Deng, Z.,
and Schuh, H.: Estimating integrated water vapor trends from VLBI, GPS, and
numerical weather models: Sensitivity to tropospheric parameterization,
J. Geophys. Res.-Atmos., 123, 6356–6372, https://doi.org/10.1029/2017JD028049,
2018.
Benevides, P., Catalao, J., and Miranda, P. M. A.: On the inclusion of GPS
precipitable water vapour in the nowcasting of
rainfall, Nat. Hazards Earth Syst. Sci., 15, 2605–2616, https://doi.org/10.5194/nhess-15-2605-2015, 2015.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.:
GPS meteorology: Remote sensing of atmospheric water vapor using the Global
Positioning System, J. Geophys. Res., 97, 15784–15801, https://doi.org/10.1029/92jd01517, 1992.
Bevis, M., Businger, S., Chiswell, S. R., Anthes, R. A., Rocken, C., and
Ware,
R. H.: GPS meteorology: Mapping zenith wet delay onto precipitable water,
J. Appl. Meteorol., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:gmmzwd>2.0.co;2, 1994.
Böhm, J., Niell, A., Tregoning, P., and Schuh, H.: Global Mapping Function
(GMF): A new empirical mapping function, Geophys. Res. Lett., 33,
L07304, https://doi.org/10.1029/2005GL025546, 2006.
Böhm, J., Heinkelmann, R., and Schuh, H.: Short note: a global model of
pressure and temperature for geodetic applications, J. Geodesy, 81,
679–683, https://doi.org/10.1007/s00190-007-0135-3, 2007.
Böhm, J., Möller, G., Schindelegger, M., Pain, G., and Weber, R.:
Development of an improved empirical model for slant delays in the
troposphere (GPT2w), GPS Solut., 19, 433–441, https://doi.org/10.1007/s10291-014-0403-7, 2014.
Bonafoni, S., Mazzoni, A., Cimini, D., Montopoli, M., Pierdicca, N., Basili,
P., Ciotti, P., and Carlesimo, G.: Assessment of water vapor retrievals from
a GPS receiver network, GPS Solut., 17, 475–484, https://doi.org/10.1007/s10291-012-0293-5, 2013.
Bruyninx, C.: The EUREF Permanent Network; a multi-disciplinary network
serving surveyors as well as scientists, GeoInformatics, 7, 32–35, 2004.
Businger, S., Chiswell, S. R., Bevis, M., Duan, J., Anthes, R. A., Rocken,
C., Ware, R. H., Exner, M., VanHofe, H., and Solheim, F.: The promise of GPS
in Atmospheric Monitoring, B. Am. Meteorol.
Soc., 77, 5–18, https://doi.org/10.1175/1520-0477(1996)077<0005:tpogia>2.0.co;2, 1996.
Cao, Y. J., Guo, H., Liao, R. W., and Uradzinski, M.: Analysis of water vapor
characteristics of regional rainfall around Poyang Lake using ground-based
GPS observations, Acta Geod. Geophys., 51, 467–479, https://doi.org/10.1007/s40328-015-0137-1, 2016.
Collins, J. P. and Langley, R. B.: A tropospheric delay model for the user
of the Wide Area Augmentation System, Final contract report for Nav Canada,
Department of Geodesy and Geomatics, Engineering Technical Report No. 187,
University of New Brunswick, Fredericton, N.B., Canada, 1997.
Dach, R., Lutz, S., Walser, P., and Fridez, P.: GNSS Software Version 5.2.
User manual, Astronomical Institute, University of Bern, Bern Open
Publishing, ISBN: 978-3-906813-05-9, https://doi.org/10.7892/boris.72297, 2015.
Davis, J. L., Herring,
T. A., Shapiro, I. I., Rogers, A. E. E., and Elgered, G.: Geodesy by
radio interferometry: Effects of atmospheric modeling errors on estimates of
baseline length, Radio Sci., 20, 1593–1607, https://doi.org/10.1029/rs020i006p01593,
1985.
Duan, J., Bevis, M., Peng, F., Bock, Y., Steven, C., Steven, B., Christian,
R., Frederick, S., Terasa H., Randolph, W., Simon, M., and Herring, T. A.: GPS
Meteorology: Direct Estimation of the Absolute Value of Precipitable Water,
J. Appl. Meteorol., 35, 830–838, https://doi.org/10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2, 1996.
Fotiou, A. and Pikridas, C.: GPS and Geodetic Applications, 2nd edn.,
Zitis Publications, Thessaloniki, Greece, 2012.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006.
Haase, J., Ge, M., Vedel, H., and Candalais, E.: Accuracy and Variability of
GPS Tropospheric Delay Measurements of Water Vapor in the Western
Mediterranean, J. Appl. Meteorol., 42, 1547–1568,
https://doi.org/10.1175/1520-0450(2003)042<1547:AAVOGT>2.0.CO;2, 2003.
Krueger, E., Schuler, T., and Arbesser-Rastburg, B.: The Standard
Tropospheric Correction Model for the European Satellite Navigation System
Galileo. Proc. General Assembly URSI, New Delhi, India, available at:
https://www.researchgate.net/profile/Bertram_ArbesserRastburg/publication/252717445_THE_STANDARD_TROPOSPHERIC_CORRECTION_MODEL_FOR_THE_EUROPEAN_SATELLITE_NAVIGATION_SYSTEM_GALILEO/links/00b4952c318413b26d000000.pdf
(last access: June 2018), 2005.
Lagler, K., Schindelegger, M., Bohm, J., Krasna, H., and Nilsson, T.: GPT2:
Empirical slant delay model for radio space geodetic techniques,
Geophys. Res. Lett., 40, 1069–1073, https://doi.org/10.1002/grl.50288,
2013.
Liu, J., Chen, X., Sun, J., and Liu, Q.: An analysis of GPT2/GPT2w+Saastamoinen
models for estimating zenith tropospheric delay over Asian area, Adv.
Space Res., 59, 824–832, https://doi.org/10.1016/j.asr.2016.09.019, 2017.
Mendes, V. B., Prates, G., Santao, L., and Langley, R. B.: An evaluation of
the accuracy of models for the determination of weighted mean temperature of
the atmosphere, Proc. ION 2000, National Technical Meeting, Anaheim, CA,
USA, 433–438, 2000.
Moore, A. W., Small, I. J., Gutman, S. I., Bock, Y., Dumas, J. L., Fang, P.,
Haase, J. S., Jackson, M. E., and Laber, J. L.: National Weather Service
Forecasters Use GPS Precipitable Water Vapor for Enhanced PART B –
TECHNICAL ANNEX 7 Situational Awareness during the Southern California
Summer Monsoon, American Meteorological Society,
https://doi.org/10.1175/BAMS-D-14-00095.1, 2015.
Olalekan, I., Ludwig, C., and Joel, B. O.: A Presentation at the United
Nations /Russian Federation Workshop on the Applications of GNSS, 18–22 May
2015, Krasnoyarsk, Russian Federation, available at:
http://www.unoosa.org/documents/pdf/psa/activities/2015/RussiaGNSS/abstracts.pdf (last access: June 2018),
2015.
Pikridas, C., Katsougiannopoulos, S., and Zinas, N.: A comparative study of
zenith tropospheric delay and precipitable water vapor estimates using
scientific GPS processing software and web based automated PPP service, Acta
Geod. Geophys., 49, 177–188, https://doi.org/10.1007/s40328-014-0047-7, 2014.
Rahimi, Z., Shafri, H. Z. M., Othman, F., and Norman, M.: Effect of
tropospheric models on derived precipitable water vapor over Southeast Asia,
J. Atmos. Solar-Terr. Phy., 157–158, 55–66,
https://doi.org/10.1016/j.jastp.2017.02.011, 2017.
Rózsa, S.: Uncertainty considerations for the comparison of water vapour
derived from radiosondes and GNSS, in: Earth on
the Edge: Science for a Sustainable Planet, edited by: Rizos, C. and Willis, P., International Association of
Geodesy Symposia, Springer, Berlin, Heidelberg, 139, 65–78, https://doi.org/10.1007/978-3-642-37222-3_9, 2014.
Saastamoinen, J. J.: Contributions to the Theory of Atmospheric Refraction,
Bulletin Géodésique, 105, 279–298, https://doi.org/10.1007/BF02521844,
1972.
Shoji, Y., Kunii, M., and Saito, K.: Mesoscale data assimilation of
Myanmar cyclone Nargis. Part 2: assimilation of GPS derived precipitable
water vapor, J. Meteorol. Soc. Jpn., 89, 67–88,
https://doi.org/10.2151/jmsj.2011-105, 2011.
Vedel, H., Huang, X. Y., Haase, J., Ge, M., and Calais, E.: Impact ofGPS
zenith tropospheric delay data on precipitation forecasts in Mediterranean
France and Spain, Geophys. Res. Lett., 31, 2004, https://doi.org/10.1029/2003gl017715.
World Meteorological Organization: Guide to Meteorological Instruments, and
methods of Observation, Chapter 1, available at:
https://library.wmo.int/opac/doc_num.php?explnum_id=3179 (last access: June 2018), 2010.
Yao, Y., Shan, L., and Zhao, D.: Establishing a method of short-term rainfall
forecasting based on GNSS-derived PWV and its application, Sci.
Rep.-UK, 7, 12465, https://doi.org/10.1038/s41598-017-12593-z, 2017.
Zus, F., Dick, G., Douša, J., Heise, S., and Wickert, J.: The rapid and
precise computation of GPS slant total delays and mapping factors utilizing
a numerical weather model, Radio Sci., 49, 207–216, https://doi.org/10.1002/2013RS005280, 2014.
Short summary
Tropospheric delay comprises one of the most important error sources in satellite navigation and is caused when radio signals broadcasted by GPS satellites propagate into the atmosphere. This study aims to evaluate the tropospheric delay performance for GNSS integrated water vapor (IWV) estimation by using GPT2w model, ECMWF's IFS reanalysis model and ground meteorological data from two stations of the permanent network of Cyprus and Greece.
Tropospheric delay comprises one of the most important error sources in satellite navigation and...