Articles | Volume 45
https://doi.org/10.5194/adgeo-45-35-2018
https://doi.org/10.5194/adgeo-45-35-2018
25 Jul 2018
 | 25 Jul 2018

Empirical growth models for the renewable energy sector

Kristoffer Rypdal

Cited articles

BP Statistical Review of World Energy: Statistical Review of World Energy – all data 1965–2017, “Renewables – Solar consumption” and “Renewables – Wind consumption”, available at: https://on.bp.com/2yfYxzQ (last access: 23 June 2018), 2017. a, b, c
Capocelli, R. and Ricciardi, L.: Growth with regulation in random environment, Kybernetik, 15, 147–157, 1974. a
Dale, M., Krumdieck, S., and Bodger, P.: Global energy modelling – A biophysical approach (GEMBA) Part 2: Methodology, Ecol. Econ., 73, 158–167, https://doi.org/10.1016/j.ecolecon.2011.10.028, 2011. a
Davidsson, S., Grandell, L., Wachtmeister, H., and Höök, M.: Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy, Energ. Policy, 73, 767–776, https://doi.org/10.1016/j.enpol.2014.05.003, 2014. a
Donges, J., Winkelmann, R., Cornell, S. E., Lucht, W., Dyke, J. G., Rockström, J., Heitzig, J., and Schellnhuber, H.-J.: Closing the loop: reconnecting human dynamics to Earth system science, Anthropocene Review, 4, 151–157, https://doi.org/10.1177/2053019617725537, 2017. a
Download
Short summary
Empirical models for growth of renewable power are compared; the exponential, logistic, and power-law models. It is shown that the latter is a natural model for growth that slows down due to various constraints, yet not experiencing the effect of an upper limit defined by physical boundaries. One cannot conclude that this model is preferable based on the historical data only, but the predictions also align well with scenarios based on macroeconomic modelling that meet the two-degree target.
Share