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Abstract. Three simple, empirical models for growth of
power consumption in the renewable energy sector are com-
pared. These are the exponential, logistic, and power-law
models. The exponential model describes growth at a fixed
relative growth rate, the logistic model saturates at a fixed
limit, while the power-law model describes slowing, but un-
limited, growth. The model parameters are determined by re-
gression to historical global data for solar and wind power
consumption, and model projections are compared to sce-
narios based on macroeconomic modelling that meet the 2◦

target. It is demonstrated that rational rejection of an expo-
nential growth model in favour of a logistic growth model
cannot be made from existing data for the historical evolu-
tion of global renewable power consumption y(t). It is also
shown that the logistic model yields saturation of growth at
unrealistic low levels. The power-law growth model is found
to give very good fits to the data through the last decade, and
the projections align very well with the scenarios. Power-law
growth is equivalent to the simple law that the relative growth
rate y′/y decays inversely proportional to time. It is shown
that this is a natural model for growth that slows down due to
various constraints, yet not experiencing the effect of a strict
upper limit defined by physical boundaries. If the actual con-
sumption follows the power-law curve in the years to come
the exponential-growth null hypothesis can be correctly re-
jected around 2020.

1 Introduction

It is widely recognised that economic growth in most sectors
finally will have to come to an end due to the constraints
imposed by planetary boundaries and that we need a new
paradigm in Earth System science that integrates the physi-
cal, biological, economic, social and cultural forces (Donges
et al., 2017). This idea has been developed for instance in

the numerous reports to the Club of Rome, starting with the
seminal book “The Limits to Growth” in 1972 (Meadows et
al., 1972), which contains interesting reflections on the Earth
system limits to exponential growth. Later reports like the
forty-year follow up, “2052: A Global Forecast for the next
Forty Years” (Randers, 2012), draw rather pessimistic pic-
tures of our energy future. Somewhat more optimistic are
the 450 scenario of the International Energy Agency (IEA,
2016) and the REmap scenario of the International Renew-
able Energy Agency (IRENA, 2018b). These scenarios rep-
resent emission pathways that give a fair chance of limiting
global warming to 2 ◦C relative to preindustrial global mean
surface temperatures.

Energy production and distribution is the sector on which
everything else depends, and despite steady advances in en-
ergy efficiency, the growth of the world economy relies on
continuing growth of energy consumption. Without a mas-
sive deployment of carbon capture and storage (CCS) and
other negative emission technologies, the target of global
warming below 2 ◦C from preindustrial temperatures re-
quires radical reduction of coal in electricity production over
next decades (IPCC, 2014; Hansen et al., 2017a). At present
there is doubt about the technical and economic feasibility
of capturing and storing 4 Gt CO2 annually by 2040. This is
more than 10 % of the emissions from fossil fuels and indus-
try, and will require thousands of large-scale CCS plants (Le
Quéré et al., 2016; Global CCS Institute, 2015). The known
reserves of conventional oil and natural gas will set strict lim-
itations to the growth in the consumption of these fuels, al-
though fracking technologies will extend their time window
somewhat (IPCC, 2014). In theory, large scale implementa-
tion of fourth generation nuclear power with a total reforma-
tion of the nuclear industry and the national and international
regulatory systems, could buy some time (Makabe, 2017),
but the political feasibility of such a project is highly ques-
tionable. Most integrated assessment models (IAMs) used in
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IPCC (2014) include optimistic assumptions on implemen-
tation of negative emission technology, but still the majority
of such models conclude that a future growth rate of 1–2 %
of world gross domestic product constrained by the 2◦ global
temperature target will require that solar and wind power pro-
duction and consumption continues to grow at present rates
without fundamental constraints (Nordhaus, 2013). A fourth
option, geoengineering, has not been seriously implemented
in the IAMs yet, since these are the least matured set of tech-
nologies, and associated with profound ethical issues. Thus,
the rather depressing state of affairs is that the prospect of
meeting the IPCC temperature targets rests on the economic
feasibility of accelerating growth of world-wide, large-scale
deployment of at least one of four classes of technologies;
CCS, 4th generation nuclear, geoengineering, or renewables,
and it is by no means obvious that any of them can meet the
world’s demand for clean, safe, and affordable energy.

The present paper has focus on the possible constraints
on the growth of the intermittent power sources; solar and
wind. Consumption of hydropower and traditional bioenergy
are considerably larger at present, but their growth potential
is almost exhausted. For hydro this is true in the developed
world, while some developing countries still have large un-
exploited resources. The installed capacity of hydro has dou-
bled over the last thirty years, and the growth looks more lin-
ear than exponential. In contrast, solar and wind have been
growing exponentially with a doubling time of 2 years for
solar and three years for wind (WEC, 2016; IRENA, 2018b).

The continued exponential growth is compared to the
IEA 450 scenario and the IRENA REmap scenario in Fig. 1a.
The figure shows projected exponential growth of consump-
tion of solar and wind power obtained by fitting a linear
model to the logarithm of the consumption time series for
the period 1997–2016. The red curve is solar power, the blue
is wind power. The relative growth rate is y′/y = 0.35 for
solar and y′/y = 0.23 and for wind, which lets solar power
overtake wind as the leading technology before 2030. The
red points to the right in the figure represent the total solar
photovoltaic (PV) power consumption in 2025 and 2040 ac-
cording to IEA’s 450 scenario and the REmap projection of
solar PV in 2050. The blue points to the right show the same
data for wind power. The figure illustrates that with contin-
ued exponential growth solar and wind together can deliver
enough to fulfil the 2◦ target demands for 2050 more than
twenty years ahead of time. This observation does not give
us a great reason for optimism, though. It rather suggests that
the era of exponential growth will soon be over.

Forthcoming sections will discuss two alternative growth
models, one is the logistic model which describes initially
exponential growth that saturates and finally stabilises at a
fixed limit. The other is a power-law model, which does not
saturate, but yields slower that exponential growth that pro-
vides a description more in line with the 2◦ scenarios. Re-
sults of power-law fit to the historical global consumption
data are shown in Fig. 1b. The fit to the wind consumption
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Figure 1. (a) Projected exponential growth of consumption of solar
and wind power obtained by fitting a linear model to the logarithm
of the consumption time series (the points to the left) for the two
decades 1997–2016. Note that the vertical scale is logarithmic, so
exponential growth is represented as a straight line.The red curve is
solar PV power and the blue is wind power. The the red points to
the right in the figure are the projected solar PV power consump-
tion in the IEA 450 scenario for 2025 and 2040 and in the IRENA
REmap scenario for 2050. The blue points to the right are the corre-
sponding for wind power consumption. (b) The points are the same
as in panel (a), but the lines are power-law fits to the points for the
decade 2007–2016 for wind power and 2008–2016 for solar power.

curve matches perfectly the wind consumption projections
in the 450 scenario for 2025 and 2040, and the REmap pro-
jection for 2050. The solar consumption fit curve overshoots
those 2◦ target projections, but by less than a factor 2, and
shows the same tendency of decreasing relative growth rate.
The details of the models and the fitting procedures are pre-
sented in Sects. 2 and 3.

Solar and wind represent proven technologies of a certain
maturity, but their intermittency is an obstacle that is held by
some to be a fundamental constraint to further growth. These
and other constraints have been discussed in many recent pa-
pers, e.g., Moriarty and Honnery (2011), Dale et al. (2011),
Hall et al. (2014), and Davidsson et al. (2014). These out-
line a large number of restraining factors that that may slow,
and possibly halt growth of renewable energies, whose low
energy return on investment may negatively impact general
economic growth. However, the majority of these papers do
not present balanced treatments of impeding and accelerating
factors, and do not make quantitative, integrated assessments
of all these in a setting where energy markets develop in a
world with effective implementation of climate change poli-
cies, including global pricing of carbon emissions.

In stark contrast to these papers are the most recent reports
of the globally levelised cost of energy (LCOE) for wind and
solar photovoltaic power. According to IRENA (2018a) the
LCOE for these technologies are already in the lower section
of the range of 0.05–0.17 USD kWh−1 for fossil fuel gener-
ation power in the G20 countries, and predicts that by 2020
all renewable technologies now in commercial use will fall
in the fossil fuel fired cost range, with most in the lower end.
Cost reduction drivers are technology improvements, com-
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petitive procurement and a large base of experienced, inter-
nationally active project developers. So far, scarcity of nat-
ural resources, available land, or other planetary constraints
do not seem to play any significant limiting role in the de-
velopment. Another interesting observation made by IRENA
(2018a) is that the total investment level in these technologies
has not increased significantly over the last decade, which
indicates that the expected redirection of investments from
fossil to renewables has not yet started. When this transfor-
mation gains momentum a new impetus for increased growth
will enter the stage, but it is difficult to predict its impact on
the growth rate.

This landscape of huge uncertainty in projections for the
market of renewables, and the complexity of modeling them,
have stimulated search for signs of stagnating growth in his-
torical data for deployment of the fastest growing renew-
able energy technologies. Notably, Hansen et al. (2017b) at-
tempt to make a model selection between exponential and
logistic growth of wind and solar power based on standard
curve fitting to historical data. The logistic growth curve has
the form of a sigmoid, where the initial exponential growth
converges to a maximum value due to a nonlinear satura-
tion mechanism. They conclude that the logistic curve gen-
erally yields “better fit”, and that there is a statistically sig-
nificant decline in the relative growth rate, signifying slower-
than-exponential growth. They suggest that the fitted logistic
curves indicate a stagnating optimum level of installed wind-
and solar capacity not much higher than twice today’s capac-
ity, which effectively would remove solar and wind power
from the list of potentially “life-saving” technologies. The
harsh implications of these projections make it worthwhile
to examine their substance in some detail, and to explore
whether conclusions of this nature can be drawn from his-
torical data via application of more rigorous methodologies.

The remainder of the paper is structured as follows. In
Sect. 2 the inadequacy of usual least mean square fitting for
models with multiplicative noise is explained and illustrated
by an analysis of the growth curve for global consumption of
wind power. The stochastic equations for exponential and lo-
gistic growth with multiplicative noise are then formulated,
and an alternative least mean square fitting method, where
the logarithms of these models are fitted to the logarithm
of the data, is shown to be one that responds to the entire
time series, not only to the greater values at its end. The
section is concluded by formulating a test designed to re-
ject the exponential-growth null hypothesis, and this test is
applied to the wind data. According to this test, the expo-
nential growth model is not rejected by these data. In Sect. 3
the results of fitting the exponential and the logistic mod-
els to the solar and wind power data are presented, and the
slower-than-exponential power-law growth model is also ex-
plored and shown to yield good fits. Section 4 discusses the
possible advantages of simple, empirical models over com-
plex dynamical models in this particular context, and Sect. 5
summarises the main results.

2 Methods

Standard curve fitting is an example of regression where one
estimates the parameters (regression coefficients) α of a sta-
tistical model of the form;

y = f (t;α)+ ε, (1)

where t is the predictor variable (in our case; time), ε rep-
resents the “random” or “unexplained” part of the response
variable y (e.g., installed capacity), and f (t;α) is some spec-
ified function. Suppose we have n observations {(ti,yi)},
i = 1, . . .,n of the predictors and the response variable, then
regression means to find the regression coefficients α such
that the set of residuals {ri ≡ yi − f (ti;α)}, i = 1, . . .,n is
minimised in a metric (norm) to be specified. A commonly
used metric is the least square objective function

Q2(α)≡

n∑
i=1

r2
i =

n∑
i=1
|yi − f (ti;α)|

2. (2)

2.1 Multiplicative noise and fitting to log-data

Minimising the least-square deviation to yield the best es-
timate α = α̂ often leads to the best visual fit of the curve
(graph) of f (t; α̂) to the data, but for data where the fluc-
tuation level 1yi = |yi − yi−1| is proportional to yi (multi-
plicative noise), this metric will not provide the best model
for the growth, since the estimated model parameters will
be very sensitive to the random fluctuations of the larger data
points in the time series (this sensitivity will be demonstrated
when models are fitted to consumption data in Figs. 3 and 4).
A more relevant quantity to minimise is the mean square of
z−lnf , where z= lny, since the fluctuations dz= dy/y will
have magnitudes that no longer are proportional to y (addi-
tive noise). The model to fit is then lnf (t,α); for the expo-
nential model this reduces to fitting a straight line to the log-
data, and for the logistic function fit, it corresponds to fitting
a function which has the slope of the initial relative growth
rate for t � ts and a zero slope for t � ts, where ts is the in-
flection point of the logistic growth curve. The logistic model
and exact meaning of ts is explained further in Sect. 2.3.

2.2 Exponential growth and the Black-Scholes
stochastic equation

The rationale for operating on the logarithm lny rather than
on y can be seen from the canonical Black-Scholes (BS)
stochastic differential equation (SDE) for asset prices, which
is a general description of any continuous-time variable
stochastic process y(t) that grows at a rate µy(t) and is sub-
ject to random increments y(t)σ dB(t) (McCauley, 2004).
Since the growth rate is proportional to the asset price y(t)
this term contributes to exponential growth of y(t), while
the stochastic term gives rise to price fluctuations. Since the
magnitude of the fluctuations are proportional to y(t) this is
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an example of multiplicative noise. The multiplicative noise
in y reduces to additive noise in z= lny. The equation takes
the form,

dy = µy dt + yσ dB(t), (3)

where B(t) is the Wiener process (also called Brownian mo-
tion), µ represents the general economic growth rate and σ
measures the strength of the price fluctuations. The essen-
tial properties of the Wiener process is that the increments
dB(t) are identical and independently distributed (i.i.d.),
from which it also follows that the distribution is Gaussian.
With discrete time steps, e.g., a time series of annual data, the
Brownian motion reduces to a Gaussian random walk pro-
cess. The equation for the logarithm z= lny is,

dz= (µ− σ 2/2)dt + σ dB(t), (4)

The non-intuitive term −σ 2/2 in the drift coefficient in
Eq. (4) arises because the equation is an SDE for the stochas-
tic process y(t). For a change of variable like z= f (z)=
lny, we have Itô’s first lemma, which states that if y(t)
satisfies Eq. (3), and f (y) is a twice differentiable func-
tion, then the stochastic process z= f (y) satisfies the SDE
dz= [µf ′(y)+ (1/2)f ′′(y)σ 2y2

]dt + σ dB(t). For f (y)=
lny this equation reduces to Eq. (4). It implies that the
stochastic forcing gives rise to an additional drift. The so-
lution to Eq. (4) is a geometric Brownian motion (gBm);

y(t)= exp[z(t)] = y0 exp[(µ−
σ 2

2
)t + σB(t)], (5)

The deterministic factor exp[(µ− σ 2/2)t] grows exponen-
tially and the probability density function (PDF) of this
stochastic process is skewed and log-normal. The expected
value of this distribution grows linearly as E[y] = y0 exp[µt]
and the variance as Var[y] = y2

0 exp[2µt](exp[σ 2t]−1). This
variance represents the statistical uncertainty associated with
market fluctuations in an exponentially expanding economy.

2.3 A stochastic equation for logistic growth

The debate over the growth of consumption of renewable
energy is concerned with whether the deterministic fac-
tor should be replaced by a function that exhibits limited
growth, such as a logistic function. In making this assess-
ment, however, one has to take into consideration the na-
ture of the sources of statistical uncertainty, which for ex-
ponential growth is represented by the multiplicative noise
factor exp[σB(t)]. While standard curve fitting is based on
the assumption that the statistical error is additive random
(white) noise, the actual market fluctuations is more accu-
rately represented as a multiplicative, autocorrelated process
which is the exponential of the Wiener process. Realisations
of these processes are shown in Fig. 2a. The blue curve is a
discrete-time Gaussian white noise, the yellow is its cumu-
lative sum, which is a random walk, or a discrete-time sam-
pling of the Wiener process, and the green curve is the gBm
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Figure 2. (a) The blue curve is a realisation of a Gaussian white
noise process. The yellow curve is a realisation of the random walk
given by the cumulative sum of the white noise. The green curve is
a realisation of the corresponding geometric Brownian motion with
drift coefficient µ−σ 2/2= 0.002. (b) The black dots represent the
global wind power consumption time series, and the red and blue
thick curves represent the linear and log-logistic least-square fit to
the logarithm of this time series, respectively. The black, dashed
curve is the fit of the power-law model discussed in Sect. 3.2. The
thin wiggly, red curves are 100 realisations of the BS process with
model parameters that are estimated from the time series data.

given by Eq. (5). Standard curve fitting assumes that the devi-
ation from the exponential growth is a Gaussian white noise.
Black-Scholes theory assumes that the exponential growth
signal is multiplied by the non-drifting geometric Brownian
motion exp[σB(t)].

We can generalise the Black-Scholes equation to a
stochastic logistic growth model (SLGM) (Capocelli and
Ricciardi, 1974);

dy = µy(1− y/ym)dt + yσ dB(t). (6)

Without the stochastic forcing term, the solution to this equa-
tion is the logistic function

yL(t;ym,µ, ts)=
ym

1+ exp[−µ(t − ts)]
, (7)

which has the shape of a sigmoid. Here, µ is the initial expo-
nential growth rate, ym = limt→∞y(t) is the asymptotic limit
to the growth, and ts is is the time where dyL/dt has its max-
imum value, which is also the time at which y(ts)= ym/2.
Hence, ts is a characteristic time for saturation of the logistic
growth. Here ts is related to the initial value y(0) through the
relation y(0)= ym/[1+ exp(µts)].

2.4 The nature of the noise

From the analysis in the upcoming Sect. 3 (in particular
Figs. 3 and 4), we will observe that the residuals obtained
from subtracting z(t) from the log-data time series vary rel-
atively smoothly from one year to the next, but sampled on
five years intervals they may be consistent with a random
walk. For instance, it will be shown that the autocorrelation
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Figure 3. The black bullets represent global solar power consump-
tion data for the period 1997–2015, and the green bullet for 2016;
all according to BP Statistical Review of World Energy (2017). In
panel (a), the red and blue curves are exponential and logistic model
fits to the 1997–2015 data, respectively. The green, dashed curves
are fits to the 1997–2016 data. In the logarithmic plot in panel (b),
the blue curve, and the green, dashed curve on top of it (almost in-
visible) is a fit of the logarithm of the logistic model to the logarithm
of the data with the parameter Pmax fixed to 550 TWh. For the green
curve, the green point is included, for the blue curve, it is not. The
other curves are similar fits with Pmax fixed to 103, 104, 105, and
106 TWh, respectively. The residualQ2 decreases monotonically to
the value corresponding to an exponential fit as Pmax→∞.

time is about four years for the residual wind time series.
The smooth appearance of the log-residuals on annual scales
has important implications for the statistical significance of
the downward trend of the relative growth rate claimed by
Hansen et al. (2017b). The relative growth rate is defined
as the slope of the log-data curve, y′/y = z′, and is con-
stant in time for exponential growth. Hansen et al. (2017b)
make a linear regression to the differences 1zi = zi − zi−1,
n= 1, . . .,19 and estimate a negative slope of this trend line
which is claimed to be significantly different from zero. Such
significance estimates, however, are only valid if the noise in
1zi on annual scale is a Gaussian i.i.d. process. The statis-
tical significance of the negative slope depends critically on
the number of independent data points, and if the fluctuations
in 1zi are independent only on time scales longer than four
years, there are effectively not more than five such points in
the data record, and this is clearly not enough to detect a sig-
nificant trend in these data.

2.5 Testing the alternative logistic growth hypothesis

The problem we deal with in this paper is to search for evi-
dence for saturation of exponential growth in time series data
that to the first order are well described by an exponential
function. More precisely, we try to find criteria by which we
can reject the BS model (exponential growth) in favour of the
SLGM (saturated growth). Hence, in this case it is natural to
treat the BS model as the null hypothesis, and the SLGM as
the alternative hypothesis. Here, we shall make the test for
the wind-power data, since it will be shown in Sect. 3 that
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Figure 4. The black bullets represent global wind power consump-
tion data for the period 1997–2015, and the green bullet for 2016;
all according to BP Statistical Review of World Energy (2017). In
panel (a), the red and blue curves are exponential and logistic model
fits to the 1997–2015 data, respectively. The green, dashed curves
are fits to the 1997–2016 data. The logarithmic plot in panel (b)
shows the fits of the logarithms of these models to the logarithms
of the data. Panel (c) shows Q2 versus Pmax, when fitting is made
with fixed Pmax. The blue curve in panel (b) is the fitted curve with
the value of Pmax fixed to the minimum of the graph in panel (c).
Panel (d) shows the ACF for the residual deviation between the data
and the exponential fit.

the SLGM can be rejected on other grounds for solar power
data.

The first step is to perform a least-square fit of the log-
arithms of the exponential and logistic models to the loga-
rithm of the data.1 The exponential fit appears as a straight
line in the log-log plot, and the sigmoid logistic curve starts
out as a straight line with slope µ, gradually bending over to
a straight line with zero slope as the growth saturates. The
exponential model contains two model parameters y0 and µ,
while the logistic model contains three; ym, µ, and ts, and
we note that the exponential model is a special case of he lo-
gistic since the latter reduces to the exponential in the limit
µ(ts−t)� 1. Hence, the logistic model should provide a bet-
ter fit than the exponential to any data set in terms of the
standard deviation of the residual

√
Q2 given by Eq. (2).

The parameter estimation described above is associated
with statistical uncertainty, which will be provided by stan-
dard fitting routines as the “standard error” of the estimation.
This is presumably what is done to obtain the confidence in-
tervals on the logistic fit in Fig. 3 of Hansen et al. (2017b).

1Using the fitting routine NonlinearModelFit in Mathematica.
See supplementary Mathematica notebooks.
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These error estimates are based on the assumption that the
observed data can be modelled by Eq. (1), where f (t;α) is
either the exponential or the logistic function, α the corre-
sponding model parameters, and ε(t) a Gaussian white noise
process. As explained in Sect. 2.2, it is generally recognised,
however, that variables describing the volume of an expand-
ing market is much more adequately described by models of
the type Eqs. (3) or (6). This means that the estimation of the
model errors (the uncertainty in the model coefficients) must
be based on those stochastic models.

Since the question is whether or not we can reject the BS
model (the null hypothesis) from the data we explore the im-
plications of that model. It is important to keep in mind that
when testing a null hypothesis one has to assume that all as-
sumptions of that hypothesis are true when we explore the
implications of the hypothesis, even if one does not believe
that they are true. For instance, according to Eq. (3) the resid-
ual obtained by subtracting the fitted z(t) from the log-data
should be modelled as a Wiener process. To make sure that
the downward curving indicated by the three last data points
does not contribute to the estimate of the mean and variance
of this Wiener process, these points are dropped before es-
timating the process parameters. After estimating the mean
and variance of this process from the residual data,2 one can
produce an ensemble of numerical realisations of the pro-
cesses described by Eq. (3). Such an ensemble of realisations
is shown for wind power as the cloud of thin wiggly curves in
Fig. 2b. The extent of this cloud indicates the uncertainty of
the realisations of the fitted model. We could have used this
cloud to compute 95 % confidence intervals, but this cloud of
100 realisations actually illustrates better that the observed
time series (the black dots) is a possible realisation of the
BS model and hence consistent with exponential growth. The
blue curve is the fit of the logistic model, and is a clearly bet-
ter fit in terms ofQ2, but that is obvious due to the additional
freedom arising from an additional model parameter.

3 Results for solar and wind power consumption

3.1 Exponential versus logistic growth

The blue and red curves in Fig. 3a show the exponential and
logistic least square fits to the time series of global solar
power consumption for the period 1997–2015, and the green
dotted curves show the effect of including the data point
for 2016 (the green dot). It illustrates that by fitting an ex-
ponential model to the exponentially growing consumption
data, the result becomes very sensitive to the last data points,
since these are so large compared to the early part of the
time record. However, when we attempt to fit the logarithm
of the logistic model to the logarithm of these data it turns
out that the best fit (least Q2) is obtained in the exponential
limit Pmax→∞, tp→∞. In order to check this result, the

2Using the function EstimatedProcess in Mathematica.

fitting routine has been applied with fixed Pmax = 550, 103,
104, 105, 106. The results are shown in Fig. 3b as the blue,
gray, yellow, green, and red curves, and the corresponding
values of the least square deviation areQ2 = 0.1608, 0.1411,
0.1230, 0.1214, 0.1212. This means that, even though the lo-
gistic model has one more degree of freedom, the exponen-
tial model yields a better fit, and it is not possible to estimate
a growth limit by fitting the logistic model to the data. In
Sect. 3.2 we shall consider another growth model that makes
more sense for these and other data.

A similar analysis has been done to wind power consump-
tion data in Fig. 4a and b. For these data, however, a well
defined minimum for Q2 is found for the logarithmic fit and
is shown by the blue curve in Fig. 4b. On top of this curve,
but barely visible, is a green, dashed curve representing the
fit with the last green point of 2016 included. It serves to
demonstrate how the sensitivity to the last points in the time
series is reduced by fitting logarithms rather than the raw
consumption data. Fig. 4c shows Q2 versus Pmax, when fit-
ting is made with fixed Pmax. It shows a well defined min-
imum, which corresponds to the blue curve in Fig. 4b. In
Fig. 4d is plotted the autocorrelation function (ACF) for the
residual deviation between the data and the exponential fit.
It shows an autocorrelation time of around four years, hence
the residual for the entire data series contain no more than
five data points that can be considered independent.

3.2 Power-law growth – a middle ground

It is clear from Fig. 1a that continuing exponential growth
for solar and wind power beyond 2030 implies volumes that
seem almost unthinkable. Hence, it is not unreasonable to
consider the possibility that the declining relative growth rate
z′ = y′/y observed for wind power in Fig. 2b is the man-
ifestation of a declining trend in this growth rate. What is
demonstrated in that figure is not that this decline is not real,
but that it is not statistically significant for the time series
data at hand. But even if we assume that this decline is real,
the correct model does not have to be the logistic one. The
logistic model requires complete saturation of the growth for
times well beyond tp, while some regional data, for instance
wind consumption in Europe, seem to display non-saturating
growth slower than exponential. Actually a third-order poly-
nomial can be very accurately fitted to those data. By examin-
ing many regional data sets in logarithmic plots there seems
to be a curve which is linear (exponential growth), or even
curving upwards, up to a certain year, and then a logarithmic-
like curve after this year. This is in fact also what we observe
in the global solar consumption data.

Suppose we identify a year after which the logarithm of the
consumption time record exhibits such a logarithmic growth,
and let us drop all data prior to that year. A model that cap-
tures this logarithmic behaviour has the form

y(t)= p(t + t0)
q , (8)
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since it implies that lny(t)= lnp+q ln(t+ t0). Here the ori-
gin of the time axis is chosen at the first year of the new
shorter time series and t0 then is a positive number. The
power-law model is a solution of the differential equation

dy
dt
=

q

t + t0
y, (9)

which is just the equation for exponential growth with a time-
dependent relative growth rate γ (t)= q/(t + t0). By adding
a multiplicative noise term on the right hand side, Eq. (9) can
easily be cast into the form of a generalised BS equation.

When an exponential model was fitted to the data, the idea
was to make use of the entire time series and give equal
weight to the early and late stages of the growth. This is why
it was appropriate to fit the linear model to the logarithm of
the data. The power-law model, however, is expected to de-
scribe only the latest decade of the historical growth, and the
advantage of fitting the logarithm of the power-law model to
the logarithm of the data is not so obvious. The two methods
give similar results, and those presented in Fig. 1b are for
the power-law model fitted to the consumption data without
taking logarithms.

For the global solar power consumption, the time series
prior to 2007 does not fit to the model and must be discarded.
The fit for the period 2008–2016 is shown as the red curve in
Fig. 1b. For global wind power consumption, the entire time
series can be used meaningfully, but the last decade is ex-
pected to contain more relevant information about the time-
dependent growth rate. The latter yields a slightly lower q
and the fit is shown as the blue curve in Fig. 1b. The resid-
ual variancesQ2 are considerably lower than the correspond-
ing for the fitted exponential model (the fit is much better),
but this is expected since the number of model parameters is
three for the power law model and two for the exponential
model.

The estimated growth exponents are q ≈ 2.7 for solar
power and q ≈ 2.0 for wind power. This implies that the so-
lar power consumption overtakes wind power around 2034,
a few years later than predicted by the exponential growth
model. According to the REmap scenario this would happen
just after mid-century.

For the power-law model the underlying assumption is that
it is not a good model up to certain date, where constraining
factors start to kick in. That date can only be established by
examination of the data. For wind power the result is quite
insensitive to the choice of this date, but the fit is best if I
choose it as late as 2007. For solar power the growth is faster
than exponential before 2007, and the best fit is found if 2008
is chosen as a start date. That gives 10 data points to fit for
wind and 9 data points for solar. Choosing a later start date
has negligible effect on the fitted curves. Hence the results of
the fitting procedure is quite robust as long as the start date is
chosen after the saturation of the exponential growth has be-
come visible in the data, i.e. after the slope of the logarithmic
plot has started to decrease.

It should be emphasised that this is not cherry-picking, but
construction of a model that has a limited range of validity
and based on the available data. It is also important to keep
in mind that there is also an upper time limit for the validity
of the power-law model, since it exhibits unlimited growth
as t goes to infinity. In this paper I have assumed that it holds
at least up to 2050, but sooner or later the actual growth will
have to stall due to planetary boundaries.

3.3 Why power-law growth?

In this subsection it is shown that power-law growth plays
a particular role in the class of growth models with relative
growth rates γ (t) that decay towards zero as t→∞. A gen-
eral growth model for the variable y(t) is one where we have
a time-dependent relative growth rate γ (t), i.e. we have the
differential equation

dy
dt
= γ (t)y, (10)

with the solution

y = y(0)exp[

t∫
0

γ (t ′)dt ′]. (11)

Note that the growth saturates to a finite value only if the
integral

∫
∞

0 γ (t ′)dt ′ is finite. Let us now consider a wider
class of relative growth rates than considered in Section 3.2,
namely those that decay algebraically towards zero as t→
∞ with an arbitrary positive exponent µ;

γ (t)=
q

(t + t0)µ
, t0 ≥ 0, µ≥ 0. (12)

The case µ= 1 yields the power-law growth

y(t)=
y(0)
t
q

0
(t + t0)

q (13)

which was treated in Sect. 3.2. Forµ 6= 1 the general solution
is

y(t)= y(0)exp
[

q

1−µ

(
(t + t0)

1−µ
− t

1−µ
0

)]
. (14)

Hence, for µ < 1 we have unlimited growth which for t→
∞ has the asymptotic form

y(t)= y(0)exp
[

q

1−µ
t1−µ

]
, (15)

which means faster-than-exponential growth for µ < 0, ex-
ponential growth for µ= 0, and slower-than-exponential
growth for 0< µ< 1. For µ > 1 it is convenient to rewrite
Eq. (14) in the form

y(t)= y(0)exp

[
q

µ− 1

(
1

t
µ−1
0

−
1

(t + t0)µ−1

)]
. (16)
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The growth in this case is limited, and the solution increases
monotonically towards the limit

y(t)= y(0)exp

[
q t

1−µ
0

µ− 1

]
. (17)

The power-law growth for µ= 1 is thus neatly poised be-
tween the slower-than-exponential growth of Eq. (15) for
µ→ 1− and the limited growth of Eq. (16) for µ→ 1+. It is
thus a natural model for growth that slows down with time,
but for which the growth is not yet determined by a definite
growth limit set by physical boundaries.

4 Discussion

The renewable energy sector is an integrated part of the
global economy that grows in importance at the expense
of fossil-fuel based energy production and consumption. Its
growth is essentially governed by the same laws that govern
other sectors of the economy. Sectors grow at different rates,
depending on complex market mechanisms, economic pol-
icy strategies by governments and international bodies, and
in some cases by boundaries set by the availability of natu-
ral resources and land. The effect of scarcity of resources is
definitely felt in the fossil fuel sector. However, the decline,
and eventually negative sign, of growth in this sector will not
be determined by the physical limit of exploitable resources.
The decline will be determined by the competition with the
non-fossil energy sectors, by the pace of technological ad-
vances in those sectors, and by how well the international
community will succeed on implementing carbon pricing re-
flecting the actual social cost of carbon.

The two IEA and IRENA scenarios used in this paper are
the results of macroeconomic modeling based on assump-
tions of rapid technological progress in the renewable en-
ergy sector, of successful implementation of climate mitiga-
tion policies, and absence of definite limits set by scarcity
of resources and land. Neither of these assumptions can be
proven at present. For instance, the physical availability of
unexploited land up to 2050 is unquestionable, but there is
already strong public opposition against vast wind farms and
solar power installations in many countries. It is impossible
to predict or model the outcome of the political battles over
such issues, hence any attempt to justify a simple dynamical
model by suggesting specific constraining mechanisms will
appear as arbitrary and ad hoc. This is why this paper has
a focus on the construction of simple empirical rather than
dynamical models.

Thus, in this paper, no attempts have been made to derive
the three statistical models under consideration from physi-
cal and/or economic laws. That does not mean that they can-
not be interpreted in the light of such laws. The exponential
growth law that underpins the BS-equation is based on the
assumption that the capital available to expand production at

a given time is proportional to the production volume at this
time. This implies that the relative growth rate γ (t)= y′/y is
independent of time. Since the logistic growth law assumes
that γ (t)= µ[1−y(t)/ym], it implies that the relative growth
rate goes to zero as the volume y reaches a certain limit ym.
This typically models a situation where the growth rate de-
pends on a resource that is depleted as the volume grows. For
solar and wind power this could be the availability of suitable
land areas, crucial raw materials, or investment capital.

On the other hand, for renewable power there is no good
reason why the growth rate should go to zero at a particu-
lar volume of production, and the macroeconomic modelling
underlying the scenarios of IEA and IRENA does not sup-
port that such a limit will be attained during the first half of
this century. The power-law model was found to give very
good fits to the data throughout the last decade. One cannot
conclude that this model is preferable based on the histori-
cal data only, but the predictions are close to the 2◦ scenarios
of IEA and IRENA, while those of the exponential and the
logistic models are way off.

5 Conclusions

The paper has examined three empirical growth models
whose parameters are determined by fitting to historical data
for solar and wind power consumption. According to the
principle of parsimony the simplest model consistent with
the data is preferable, and in our study this is the exponen-
tial model, since it contains only two model parameters. The
snag here, of course, is that the two more complex models
yield better fit to the data, and hence it does not seem possi-
ble to select the best model from such principles.

It is clear from Fig. 2b that the exponential model is not re-
jected by the data, and it cannot be excluded that the near fu-
ture will unfold as a realisation of a geometric brownian mo-
tion, i.e. as an exponential growth with multiplicative noise.
In that case, the declining relative growth rate during the last
five years should be interpreted as a market fluctuation. On
the other hand, one cannot rule out that the decline of the
growth rate is the start of a continuing trend. One model to
describe such a trend is the logistic model, which describes
a rapid convergence to a zero growth rate. For solar power
data it is not possible to estimate the parameters of the lo-
gistic model, i.e. the optimal logistic model is reduced to the
exponential. For wind power consumption the predicted limit
is less than 50 % above the present level, which is only half of
the wind consumption in the pessimistic IEA current policies
scenario and one fourth of the prediction in the 450 scenario
(IEA, 2016). Thus, the predicted limit of the logistic model
seems unrealistically low, and hence casts doubt about the
relevance of this growth model.

On the other hand, the γ (t)∝ 1/t time dependence of the
power-law model is what yields good fit to the historical data
as well as to the 2◦ target scenario of IEA and IRENA. In
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fact, this match to historical and scenario data suggests a re-
markable simple empirical law: the relative growth rate of re-
newable energy consumption decays inversely proportional
to time. In Sec. 3.3 it was shown that that this growth law
appears as a special case of a wider class of growth models
for which the relative growth rate γ (t)= y′/y decays alge-
braically towards zero, i.e. as γ (t)∼ (t + t0)−µ. This spe-
cial case (µ= 1) constitutes the borderline between slower
than potential unlimited growth (µ < 1) and limited growth
(µ > 1).

The years to come will show if the data points will con-
tinue to fall on the power-law trajectories of Fig. 1b. If they
do, they will begin falling outside the confidence cloud of
Fig. 2b around 2020 and thus reject the exponential growth
hypothesis. Thus, after this date we may be able to make
a more educated selection among models for predicting the
growth of these renewable energies through the first half of
this century.

Code and data availability. Mathematica notebooks containing
code for the production of each of the figures in this paper can be
found in Rypdal (2018). The data used are found in the references
BP Statistical Review of World Energy (2017) and IEA (2016) and
also in the notebooks.
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