A methodology for optimizing probabilistic wind power forecasting
Related authors
Cited articles
Cotton, W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C.
J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio,
G. G., and McFadden, J. P.: RAMS 2001: Current status and future directions,
Meteorol. Atmos. Phys., 82, 5–29, https://doi.org/10.1007/s00703-001-0584-9, 2003.
Galanis, G., Louka, P., Katsafados, P., Pytharoulis, I., and Kallos, G.:
Applications of Kalman filters based on non-linear functions to numerical
weather predictions, Ann. Geophys., 24, 2451–2460,
https://doi.org/10.5194/angeo-24-2451-2006, 2006.
Jung, J. and Broadwater, R. P.: Current status and future advances for wind
speed and power forecasting, Renew. Sust. Energ. Rev., 31, 762–777,
https://doi.org/10.1016/j.rser.2013.12.054, 2014.
Pinson, P., Nielsen, H. A., Madsen, H., and Kariniotakis, G.: Skill
forecasting from ensemble predictions of wind power, Appl. Energ., 86,
1326–1334, https://doi.org/10.1016/j.apenergy.2008.10.009, 2009.
Solomos, S., Kallos, G., Kushta, J., Astitha, M., Tremback, C., Nenes, A.,
and Levin, Z.: An integrated modeling study on the effects of mineral dust
and sea salt particles on clouds and precipitation, Atmos. Chem. Phys., 11,
873–892, https://doi.org/10.5194/acp-11-873-2011, 2011.