Outcrop analogue study to determine reservoir properties of the Los Humeros and Acoculco geothermal fields, Mexico
Leandra M. Weydt
CORRESPONDING AUTHOR
Department of Geothermal Science and Technology, Technische Universitädt Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Kristian Bär
Department of Geothermal Science and Technology, Technische Universitädt Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Chiara Colombero
Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Cesare Comina
Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Paromita Deb
Institute for Applied Geophysics and Geothermal Energy, EON Energy Research Center, RWTH Aachen, Mathieustraße 10, 52074 Aachen, Germany
Baptiste Lepillier
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CD Delft, the Netherlands
Giuseppe Mandrone
Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Harald Milsch
Helmholtz Centre Potsdam – GFZ Research Centre for Geosciences, Section 6.2 – Geothermal Energy Systems, Telegrafenberg, 14473 Potsdam, Germany
Christopher A. Rochelle
British Geological Survey, Keyworth, NG125GG, Nottingham, England, UK
Federico Vagnon
Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Torino, Italy
Ingo Sass
Department of Geothermal Science and Technology, Technische Universitädt Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Darmstadt Graduate School of Excellence Energy Science and Engineering, Jovanka-Bontschits Straße 2, 64287 Darmstadt, Germany
Related authors
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Lionel Bertrand, Claire Bossennec, Wan-Chiu Li, Cédric Borgese, Bruno Gavazzi, Matthis Frey, Yves Géraud, Marc Diraison, and Ingo Sass
EGUsphere, https://doi.org/10.5194/egusphere-2023-1316, https://doi.org/10.5194/egusphere-2023-1316, 2023
Preprint archived
Short summary
Short summary
The assessement of fracture networks is a key element for underground reservoir studies. The available methods for such assessement are unfortunately very limited in the case of complex 3 dimensions geometries. The paper shows a new method to overcome these limitations through automatic detection from images of outcrops.
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, https://doi.org/10.5194/se-13-935-2022, 2022
Short summary
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
E. Adamopoulos, C. Colombero, C. Comina, F. Rinaudo, M. Volinia, M. Girotto, and L. Ardissono
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VIII-M-1-2021, 1–8, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, 2021
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Chaojie Cheng, Sina Hale, Harald Milsch, and Philipp Blum
Solid Earth, 11, 2411–2423, https://doi.org/10.5194/se-11-2411-2020, https://doi.org/10.5194/se-11-2411-2020, 2020
Short summary
Short summary
Fluids (like water or gases) within the Earth's crust often flow and interact with rock through fractures. The efficiency with which these fluids may flow through this void space is controlled by the width of the fracture(s). In this study, three different physical methods to measure fracture width were applied and compared and their predictive accuracy was evaluated. As a result, the mobile methods tested may well be applied in the field if a number of limitations and requirements are observed.
Kristian Bär, Thomas Reinsch, and Judith Bott
Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, https://doi.org/10.5194/essd-12-2485-2020, 2020
Short summary
Short summary
Petrophysical properties are key to populating numerical models of subsurface process simulations and the interpretation of many geophysical exploration methods. The P3 database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. The uniqueness of P3 emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding location, petrography, stratigraphy and original reference.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Meike Hintze, Barbara Plasse, Kristian Bär, and Ingo Sass
Adv. Geosci., 45, 251–258, https://doi.org/10.5194/adgeo-45-251-2018, https://doi.org/10.5194/adgeo-45-251-2018, 2018
Short summary
Short summary
The presented study is conducted within the scope of the joint research project "Hessen 3D 2.0" (BMWI-FKZ: 0325944) and aims at assessing the hydrothermal potential of the Pechelbronn Group for direct heat use by means of an integrated 3-D structural-geothermal model that serves to locate potential exploration areas. The assessment is based on reservoir temperature, (net)thickness of the reservoir horizon as well as on petrophysical, thermal and hydraulic rock properties.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Swarup Chauhan, Wolfram Rühaak, Hauke Anbergen, Alen Kabdenov, Marcus Freise, Thorsten Wille, and Ingo Sass
Solid Earth, 7, 1125–1139, https://doi.org/10.5194/se-7-1125-2016, https://doi.org/10.5194/se-7-1125-2016, 2016
Short summary
Short summary
Machine learning techniques are a promising alternative for processing (phase segmentation) of 3-D X-ray computer tomographic rock images. Here the performance and accuracy of different machine learning techniques are tested. The aim is to classify pore space, rock grains and matrix of four distinct rock samples. The porosity obtained based on the segmented XCT images is cross-validated with laboratory measurements. Accuracies of the different methods are discussed and recommendations proposed.
S. Homuth, A. E. Götz, and I. Sass
Geoth. Energ. Sci., 3, 41–49, https://doi.org/10.5194/gtes-3-41-2015, https://doi.org/10.5194/gtes-3-41-2015, 2015
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci., 18, 3195–3203, https://doi.org/10.5194/hess-18-3195-2014, https://doi.org/10.5194/hess-18-3195-2014, 2014
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10035-2013, https://doi.org/10.5194/hessd-10-10035-2013, 2013
Revised manuscript not accepted
Cited articles
ASTM D2845-08: Standard Test Method for Laboratory Determination of Pulse
Velocities and Ultrasonic Elastic Constants of Rock, ASTM, International
American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA, 2008.
Avellán, D. R., Macías, J. L., Layer, P. W., Sosa-Ceballos, G., Cisneros,
G., Sanchez, J. M., Martha Gómez-Vasconcelos, G., López-Loera, H.,
Reyes Agustín, G., Marti, J., Osorio, S., García-Sánchez, L.,
Pola-Villaseñor, A., García-Tenorio, F., and Benowitz, J.: Geology of
the Pleistocene Acoculco Caldera Complex, eastern Trans-Mexican Volcanic Belt
(México), J. Maps, p. 25, in review, 2017.
Bär, K.: Untersuchung der tiefengeothermischen Potenziale von Hessen,
Dissertation, XXVI and p. 265, 111 Fig., 28 Tab., 6 App., Technische
Universität Darmstadt, Darmstadt, 2012.
Canet, C., Trillaud, F., Prol-Ledesma, R., González-Hernández, G.,
Peláez, B., Hernández-Cruz, B., and Sánchez-Córdova, M. M.:
Thermal history of the Acoculco geothermal system, eastern Mexico: Insights
from numerical modeling and radiocarbon dating, J. Volcanol. Geoth. Res.,
305, 56–62, 2015.
Carrasco-Núñez, G., López-Martínez, M., Hernández, J., and
Vargas, V.: Subsurface stratigraphy and its correlation with the surficial
geology at Los Humeros geothermal field, eastern Trans-Mexican Volcanic Belt,
Geothermics, 67, 1–17, https://doi.org/10.1016/j.geothermics.2017.01.001, 2017a.
Carrasco-Núñez, G., Hernández, J., De Léon, L., Dávilla,
P., Norini, G., Bernal, J. P., Jicha, B., Jicha, B., Navarro, M., and
López-Quiroz, P.: Geologic Map of Los Humeros volcanic complex and geothermal
field eastern Trans-Mexican Volcanic Belt, Terra Digitalis, 1, 1–11, 2017b.
Carrasco-Núñez, G., Bernal, J. P., Dávilla, P., Jicha, B., Giordano,
G., and Hernández, J.: Reappraisal of Los Humeros Volcanic Complex by New
U/Th Zircon and 40Ar/39Ar Dating: Implications for Greater Geothermal
Potential, Geochem. Geophy. Geosy., 19, 132–149, https://doi.org/10.1002/2017GC007044, 2018.
Clement, R., Bergeron, M., and Moreau, S.: COMSOL Multiphysics modelling for
measurement device of electrical resistivity in laboratory test cell, in:
Proceedings of the 2011 COMSOL Conference, Stuttgart, Germany, 2011.
Ferriz, H. and Mahood, G.: Eruptive rates and compositional trends at Los Humeros
volcanic center, Puebla, Mexico, J. Geophys. Res., 89, 8511–8524, 1984.
GeoTEK: Multi-Sensor Core Logger, Manual, Northants, UK, p. 127, 2000.
GeoTEK: MSCL-S: Multi-Sensor Core Logger, http://www.geotek.co.uk/products/mscl-s/,
last access: 26 May 2018.
Geotron-Elektronik: LightHouse UMPC V1.02 Installations- und Bedienungshandbuch,
1.6, Geotron-Elektronik, Pirna, 2011.
Hornung, J. and Aigner, T.: Sedimentäre Architektur und Poroperm-Analyse
fluviatiler Sandsteine: Fallbeispiel Coburger Sandstein, Franken, in: Hallesches
Jahrbuch für Geowissenschaften, Reihe B, Beiheft 18, University of
Halle-Wittenberg, Halle (Saale), 121–138, 2004.
Huenges, E.: Geothermische Stromerzeugung – Grundstrom für den erneuerbaren
Energiemix 2050, FVEE Themen 2010, 73–76, 2010, in: Tagungsband 2010: Forschung
für das Zeitalter der erneuerbaren Energien, ForschungsVerbund Erneuerbare
Energien, Renewable Energy Research Association, Berlin, Germany, p. 148, 2010.
ISRM: Suggested methods for determining water content, porosity, density,
absorption and related properties and swelling and slake-durability index
properties, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16, 143–151, 1979.
Jolie, E., Bruhn, D., López Hernández, A., Liotta, D., Garduño-Monroy,
V. H., Lelli, M., Páll Hersir, G., Arango-Galván, C., Bonté, D.,
Calcagno, P., Deb, P., Clauser, C., Peters, E., Hernández Ochoa, A. F.,
Huenges, E., González Acevedo, Z. I., Kieling, K., Trumpy, E., Vargas, J.,
Gutiérrez-Negrín, L. C., Aragón-Aguilar, A., Halldórsdóttir,
S., González Partida, E., van Wees, J.-D., Ramírez Montes, M. A.,
Diez León, H. D., and the GEMex team: GEMex – A Mexican-European Research
Cooperation on Development of Superhot and Engineered Geothermal Systems,
SGP-TR-2013, in: Proceedings 43rd Workshop on Geothermal Reservoir Engineering,
12–14 February 2018, Stanford University, Stanford, California, p. 10, 2018.
Lepillier, B., Bakker, R., and Bruhn, D.: Characterization of a fracture-controlled
enhanced geothermal system (EGS) in the Trans-Mexican-Volcanic-Belt (TMVB),
Predictive mechanical model for fracture stimulation in an enhanced geothermal
system context(EGS), in: 9th European Geothermal PhD Days, 14–16 March 2018,
Zurich, Switzerland, 2018.
Lippmann, E. and Rauen, A.: Measurements of Thermal Conductivity (TC) and Thermal
Diffusivity (TD) by the Optical Scanning Technology, Lippmann and Rauen GbR,
Schaufling, Germany, 49 pp., 2009.
López-Hernández, A., García-Estrada, G., Aguirre-Díaz, G.,
González-Partida, E., Palma-Guzmán, H., and Quijano-Léon, J.:
Hydrothermal activity in the Tulancingo-Acoculco Caldera Complex, central Mexico:
Exploratory studies, Geothermics, 38, 279–293, https://doi.org/10.1016/j.geothermics.2009.05.001, 2009.
Micromeritics: AccuPyc 1330 Pycnometer, V2.02, Part No. 133-42808-01,
Micromeritics GmbH, Munich, Germany, 67 pp., 1997.
Micromeritics: GeoPyc 1360, V3, Part 136-42801-01, Micromeritics GmbH,
Munich, Germany, 69 pp., 1998.
Mielke, P., Bär, K., and Sass, I.: Determining the relationship of thermal
conductivity and compressional wave velocity of common rock types as a basis
for reservoir characterization, J. Appl. Geophys., 140, 135–144, https://doi.org/10.1016/j.jappgeo.2017.04.002, 2017.
Norini, G. Gropelli, G., Sulpizio, R., Carrasco-Núñez, G., Dávila-Harris,
P., Pellicioli, C., Zucca, F., and De Franco, R.: Structural analysis and thermal
remote sensing of the Los Humeros Volcanic Complex: Implications for volcano
structure and geothermal exploration, J. Volcanol. Geoth. Res., 301, 221–237, 2015.
Pfeiffer, L., Bernard-Romeo, R., Mazot, A., Taran, Y. A., Guevara, M., and
Santoyo, E.: Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S)
at a promissory Hot dry Rock Geothermal System: The Acoculco caldera, Mexico,
J. Volcanol. Geoth. Res., 284, 122–137, 2014.
Pinti, D.L., Castro, M. C., Lopez-Hernandez, A., Han, G., Shouakar-Stash, O.,
Hall, C. M., and Ramírez-Montes, M.: Gluid circulation and reservoir
conditions of the Los Humeros Geothermal Field (LHGF), Mexico, as revealed by
a noble gas survey, J. Volcanol. Geoth. Res., 333–334, 104–115, 2017.
Popov, Y. A., Sass, P. D., Williams, C. F., and Burkhardt, H.: Characterization
of rock thermal conductivity by high resolution optical scanning, Geothermics,
28, 253–276, https://doi.org/10.1016/S0375-6505(99)00007-3, 1999.
Popov, Y. A., Beardsmore, G, Clauser, C., and Roy, S.:
ISRM Suggested Methods for Determining Thermal Properties of Rocks from
Laboratory Tests at Atmospheric Pressure, Rock Mech. Rock Eng., 49, 4179–4207,
https://doi.org/10.1007/s00603-016-1070-5, 2016.
Reinsch, T., Dobson, P., Asanuma, H., Huenges, E., Poletto, F., and Sanjuan, B.:
Utilizing supercritical geothermal systems: a review of past ventures and
ongoing research activities, Geoth. Energy, 5, 25, https://doi.org/10.1186/s40517-017-0075-y, 2017.
Romo-Jones, J. M., Gutiérrez-Negrín, L. C., Flores-Armenta, M.,
del Valle, J. L., and García, A.: 2016 México Country Report,
IEA Geothermal, p. 7, 2017.
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
The here submitted paper represents the first results of a larger project named
GEMex. The...