Carbon in global waste and wastewater flows – its potential as energy source under alternative future waste management regimes
Adriana Gómez-Sanabria
CORRESPONDING AUTHOR
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Lena Höglund-Isaksson
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Peter Rafaj
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Wolfgang Schöpp
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Related authors
No articles found.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Maria K. Tenkanen, Aki Tsuruta, Hugo Denier van der Gon, Lena Höglund-Isaksson, Antti Leppänen, Tiina Markkanen, Ana Maria Roxana Petrescu, Maarit Raivonen, Hermanni Aaltonen, and Tuula Aalto
Atmos. Chem. Phys., 25, 2181–2206, https://doi.org/10.5194/acp-25-2181-2025, https://doi.org/10.5194/acp-25-2181-2025, 2025
Short summary
Short summary
Accurate national methane (CH4) emission estimates are essential for tracking progress towards climate goals. This study compares estimates from Finland, which use different methods and scales, and shows how well a global model estimates emissions within a country. The bottom-up estimates vary a lot, but constraining them with atmospheric CH4 measurements brought the estimates closer together. We also highlight the importance of quantifying natural emissions alongside anthropogenic emissions.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Flora Maria Brocza, Peter Rafaj, Robert Sander, Fabian Wagner, and Jenny Marie Jones
Atmos. Chem. Phys., 24, 7385–7404, https://doi.org/10.5194/acp-24-7385-2024, https://doi.org/10.5194/acp-24-7385-2024, 2024
Short summary
Short summary
To understand how atmospheric mercury levels will change in the future, we model how anthropogenic Hg releases will change following developments in human energy use and mercury use and efforts to reduce pollution and battle climate change. Overall, the findings emphasize that it will be necessary to implement targeted Hg control measures in addition to stringent climate and clean air policies to achieve significant reductions in Hg emissions.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Pallav Purohit, Lena Höglund-Isaksson, John Dulac, Nihar Shah, Max Wei, Peter Rafaj, and Wolfgang Schöpp
Atmos. Chem. Phys., 20, 11305–11327, https://doi.org/10.5194/acp-20-11305-2020, https://doi.org/10.5194/acp-20-11305-2020, 2020
Short summary
Short summary
This study shows that if energy efficiency improvements in cooling technologies are addressed simultaneously with a phase-down of hydrofluorocarbons (HFCs), not only will global warming be mitigated through the elimination of HFCs but also by saving about a fifth of future global electricity consumption. This means preventing between 411 and 631 Pg CO2 equivalent of greenhouse gases between today and 2100, thereby offering a significant contribution towards staying well below 2 °C warming.
Cited articles
Berglund, M. and Börjesson, P.: Assessment of energy performance in the
life-cycle of biogas production, Biomass Bioenerg., 30, 254–266,
https://doi.org/10.1016/j.biombioe.2005.11.011, 2006.
Bogner, J., Pipatti, R., Hashimoto, S., Diaz, C., Mareckova, K., Diaz, L., Kjeldsen, P.,
Monni, S., Faaij, A., Gao, Q., Zhang, T., Abdelrafie Ahmed, M., Sutamihardja, R. T. M., and Gregory, R.:
Mitigation of Global Greenhouse Gas Emissions from Waste: Conclusions and Strategies from the
Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report,
Working Group III (Mitigation), 2008.
Cakir, F. Y. and Stenstrom, M. K.: Greenhouse gas production: A comparison
between aerobic and anaerobic wastewater treatment technology, Water
Research, 39, 4197–4203, https://doi.org/10.1016/j.watres.2005.07.042, 2005.
Corsten, M., Worrell, E., Rouw, M., and van Duin, A.: The potential
contribution of sustainable waste management to energy use and greenhouse
gas emission reduction in the Netherlands, Resour. Conserv.
Recy., 77, 13–21, https://doi.org/10.1016/j.resconrec.2013.04.002, 2013.
Demirbas, A.: Combustion characteristics of different biomass fuels,
Prog. Energ. Combust., 30, 219–230,
https://doi.org/10.1016/j.pecs.2003.10.004, 2004.
Directive 2008/98/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on waste
(Waste Framework Directive), Data on waste generation and waste management,
http://ec.europa.eu/environment/waste/framework/, last access: November
2017.
EUROSTAT database: European Commission, Brussels, http://epp.eurostat.ec.europa.eu/ (last access: September 2017), 2016.
Evangelisti, S., Lettieri, P., Borello, D., and Clift, R.: Life cycle
assessment of energy from waste via anaerobic digestion: A UK case study,
Waste Management, 34, 226–237, https://doi.org/10.1016/j.wasman.2013.09.013, 2014.
FAOSTAT: Food and Agriculture Organization, Data retrieved,
http://www.fao.org/faostat/en/#data/GB (last access: June 2015), 2012.
FAOSTAT: Food and Agriculture Organization, Rome, http://faostat.fao.org (last access: November 2017), 2016.
GEA and IIASA: Global Energy Assessment: Toward a Sustainable Future,
Cambridge University Press, Cambridge, UK and New York, USA, 2012.
Ghisellini, P., Cialani, C., and Ulgiati, S.: A review on circular economy:
the expected transition to a balanced interplay of environmental and
economic systems, J. Clean. Prod., 114, 11–32,
https://doi.org/10.1016/j.jclepro.2015.09.007, 2016.
Haas, W., Krausmann, F., Wiedenhofer, D., and Heinz, M.: How
Circular is the Global Economy?: An Assessment of Material Flows, Waste
Production, and Recycling in the European Union and the World in 2005,
J. Ind. Ecol., 19, 765–777, https://doi.org/10.1111/jiec.12244,
2015.
Höglund-Isaksson, L.: Global anthropogenic methane emissions 2005–2030:
technical mitigation potentials and costs, Atmos. Chem. Phys.,
12, 9079–9096, https://doi.org/10.5194/acp-12-9079-2012, 2012.
Höglund-Isaksson, L.: GAINS model review of potentials and cost for reducing
methane emissions from EU agriculture, IIASA, Laxenburg, Austria, 2015.
Höglund-Isaksson, L., Winiwarter, W., Purohit, P., and
Gómez-Sanabria: Non-CO2 greenhouse gas emissions, mitigation potentials
and costs in the EU-28 from 2005 to 2050, 2015.
Hoornweg, D. and Bhada-Tata, P.: What a waste. A global review of solid
waste management, Urban development series knowledge papers, The World
Bank, 2012.
Hopewell, J., Dvorak, R., and Kosior, E.: Plastics recycling: challenges and
opportunities, Philos. T. R. Soc. B, 364, 2115–2126,
https://doi.org/10.1098/rstb.2008.0311, 2009.
International Energy Agency: World Energy Outlook 2017, https://www.iea.org/weo2017/ (last access: April 2018), 2017.
IPCC: IPCC Guidelines for National Greenhouse Gas Inventories 2006,
Volume 5, Chapter 2 and 6, https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html (5 March 2018), 2006.
Jones, F. C., Blomqvist, E. W., Bisaillon, M., Lindberg, D. K., and Hupa, M.:
Determination of fossil carbon content in Swedish waste fuel by four
different methods, Waste Manag. Res., 31, 1052–1061,
https://doi.org/10.1177/0734242X13490985, 2013.
Liu, Y., Sun, W., and Liu, J.: Greenhouse gas emissions from different
municipal solid waste management scenarios in China: Based on carbon and
energy flow analysis, Waste Manage., 68, 653–661,
https://doi.org/10.1016/j.wasman.2017.06.020, 2017.
Liu, Z., Yin, H., Dang, Z., and Liu, Y.: Dissolved Methane: A Hurdle for
Anaerobic Treatment of Municipal Wastewater, Environ. Sci. Technol., 48,
889–890, https://doi.org/10.1021/es405553j, 2014.
Manaf, L. A., Samah, M. A. A., and Zukki, N. I. M.: Municipal solid waste
management in Malaysia: Practices and challenges, Waste Manage., 29,
2902–2906, https://doi.org/10.1016/j.wasman.2008.07.015, 2009.
Mao, C., Feng, Y., Wang, X., and Ren, G.: Review on research achievements of
biogas from anaerobic digestion, Renew. Sust. Energ. Rev.,
45, 540–555, https://doi.org/10.1016/j.rser.2015.02.032, 2015.
Marshall, R. E. and Farahbakhsh, K.: Systems approaches to integrated solid
waste management in developing countries, Waste Manage., 33,
988–1003, https://doi.org/10.1016/j.wasman.2012.12.023, 2013.
McCarty, P. L., Bae, J., and Kim, J.: Domestic Wastewater Treatment as a Net
Energy Producer–Can This be Achieved?, Environ. Sci. Technol., 45,
7100–7106, https://doi.org/10.1021/es2014264, 2011.
Mor, S., Ravindra, K., De Visscher, A., Dahiya, R. P., and Chandra, A.:
Municipal solid waste characterization and its assessment for potential
methane generation: A case study, Sci. Total Environ., 371,
1–10, https://doi.org/10.1016/j.scitotenv.2006.04.014, 2006.
OECD: Statistical Database. Organisation for Economic Co-operation and
Development (OECD), Paris, available at: http://stats.oecd.org/,
retrieved 2016.
Pokhrel, D. and Viraraghavan, T.: Municipal solid waste management in Nepal:
practices and challenges, Waste Manage., 25, 555–562,
https://doi.org/10.1016/j.wasman.2005.01.020, 2005.
Singh, S., Kumar, S., Jain, M. C., and Kumar, D.: Increased biogas production
using microbial stimulants, Bioresource Technol., 78, 313–316,
https://doi.org/10.1016/S0960-8524(00)00143-7, 2001.
Stillwell, A. S., Hoppock, D. C., and Webber, M. E.: Energy Recovery from
Wastewater Treatment Plants in the United States: A Case Study of the
Energy-Water Nexus, Sustainability, 2, 945–962, 2010.
SWEEPNET: Regional profile on the solid waste management situation in Middle
East and North Africa, 2012.
UNEP and ISWA: Global Waste Management Outlook, United Nations Environement
Programme, 2015.
UNFCCC: National Inventory Submissions 2016, available
at:
https://unfccc.int/process/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories/submissions-of-annual-greenhouse-gas-inventories-for-2017/submissions-of-annual-ghg-inventories-2016
(retrieved 2017), 2016.
Velis, C. A.: Global recycling markets – plastic waste: A story for one
player – China. Report prepared by FUELogy and formatted by D-waste on
behalf of International Solid Waste Association – Globalisation and Waste
Management Task Force, ISWA, 2014.
Wilson, D. C., Rodic, L., Scheinberg, A., Velis, C. A., and Alabaster, G.:
Comparative analysis of solid waste management in 20 cities, Waste Manag.
Res., 30, 237–254, https://doi.org/10.1177/0734242X12437569, 2012.
World Bank Open Data: available at: https://data.worldbank.org/, retrieved
2016.
Short summary
This study shows that global implementation of a circular system to treat waste and wastewater could increase the relative contribution of these sources to global energy demand from 2 % to 9 % by 2040, corresponding to a maximum energy potential of 64 EJ per year. The outcome of the study is the result of compiling and analyzing data on waste and wastewater generation and treatment and developing future scenarios in which carbon flows and energy generation are quantified for 174 country-regions.
This study shows that global implementation of a circular system to treat waste and wastewater...