Site selection for a countrywide temporary network in Austria: noise analysis and preliminary performance
Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
P. Kolínský
Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
G. Gröschl
Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
M.-T. Apoloner
Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
E. Qorbani
Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
F. Schneider
Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
G. Bokelmann
Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
Related authors
Florian Fuchs, Wolfgang Lenhardt, Götz Bokelmann, and the AlpArray Working Group
Earth Surf. Dynam., 6, 955–970, https://doi.org/10.5194/esurf-6-955-2018, https://doi.org/10.5194/esurf-6-955-2018, 2018
Short summary
Short summary
The work demonstrates how seismic networks installed in the Alps can be used for country-wide real-time monitoring of rockslide activity. We suggest simple methods that allow us to detect, locate, and characterize rockslides using the seismic signals they generate. We developed an automatic procedure to locate rockslides with kilometer accuracy over hundreds of kilometers of distance. Our findings highlight how seismic networks can help us to understand the triggering of rockslides.
Florian Fuchs, Petr Kolínský, Gidera Gröschl, Götz Bokelmann, and the AlpArray Working Group
Adv. Geosci., 43, 1–13, https://doi.org/10.5194/adgeo-43-1-2016, https://doi.org/10.5194/adgeo-43-1-2016, 2016
Short summary
Short summary
For comparison and as guideline for future seismic experiments we describe our efforts during the installation of thirty temporary seismic stations in Eastern Austria and Western Slovakia. The stations – deployed in the framework of the AlpArray project – are commonly placed in abandoned or unused cellars or buildings. We describe the technical realization of the deployment and discuss the seismic noise conditions at each site and potential relations to geology or station design.
Ehsan Qorbani, Dimitri Zigone, Mark R. Handy, Götz Bokelmann, and AlpArray-EASI working group
Solid Earth, 11, 1947–1968, https://doi.org/10.5194/se-11-1947-2020, https://doi.org/10.5194/se-11-1947-2020, 2020
Short summary
Short summary
The crustal structure of the Eastern and Southern Alps is complex. Although several seismological studies have targeted the crust, the velocity structure under this area is still not fully understood. Here we study the crustal velocity structure using seismic ambient noise tomography. Our high-resolution models image several velocity anomalies and contrasts and reveal details of the crustal structure. We discuss our new models of the crust with respect to the geologic and tectonic features.
Eric Löberich and Götz Bokelmann
Solid Earth Discuss., https://doi.org/10.5194/se-2020-5, https://doi.org/10.5194/se-2020-5, 2020
Revised manuscript not accepted
Short summary
Short summary
Shear-wave splitting measurements have been widely used to infer upper mantle deformation, but their interpretative power has so far been limited by the ambiguity between a frozen-in lithospheric or more recent asthenospheric cause. We take advantage of the non-vertical arrival angles of SKS phases to infer the rock fabric orientation at depth under the Central Alps; we relate upper-mantle deformation in the area to a depth-dependent plane Couette-Poiseuille flow.
Florian Fuchs, Wolfgang Lenhardt, Götz Bokelmann, and the AlpArray Working Group
Earth Surf. Dynam., 6, 955–970, https://doi.org/10.5194/esurf-6-955-2018, https://doi.org/10.5194/esurf-6-955-2018, 2018
Short summary
Short summary
The work demonstrates how seismic networks installed in the Alps can be used for country-wide real-time monitoring of rockslide activity. We suggest simple methods that allow us to detect, locate, and characterize rockslides using the seismic signals they generate. We developed an automatic procedure to locate rockslides with kilometer accuracy over hundreds of kilometers of distance. Our findings highlight how seismic networks can help us to understand the triggering of rockslides.
Florian Fuchs, Petr Kolínský, Gidera Gröschl, Götz Bokelmann, and the AlpArray Working Group
Adv. Geosci., 43, 1–13, https://doi.org/10.5194/adgeo-43-1-2016, https://doi.org/10.5194/adgeo-43-1-2016, 2016
Short summary
Short summary
For comparison and as guideline for future seismic experiments we describe our efforts during the installation of thirty temporary seismic stations in Eastern Austria and Western Slovakia. The stations – deployed in the framework of the AlpArray project – are commonly placed in abandoned or unused cellars or buildings. We describe the technical realization of the deployment and discuss the seismic noise conditions at each site and potential relations to geology or station design.
I. Bianchi, M. Anselmi, M. T. Apoloner, E. Qorbani, K. Gribovski, and G. Bokelmann
Adv. Geosci., 41, 11–23, https://doi.org/10.5194/adgeo-41-11-2015, https://doi.org/10.5194/adgeo-41-11-2015, 2015
M.-T. Apoloner and G. Bokelmann
Adv. Geosci., 41, 5–10, https://doi.org/10.5194/adgeo-41-5-2015, https://doi.org/10.5194/adgeo-41-5-2015, 2015
Short summary
Short summary
For this study we use seismic array data from GERES. It is 220 km to the North West of the Vienna Basin, which - according to literature - is a suitable distance to recover PmP and sPmP phases. We use array processing on recent earthquake data from the Vienna Basin with local magnitudes from 2.1 to 4.2 to search for RDP. At the same time, we do similar processing on synthetic data specially modeled for this application.Comparing with synthetic seismograms we identify PmP and PbP phases.
R. Kind, T. Eken, F. Tilmann, F. Sodoudi, T. Taymaz, F. Bulut, X. Yuan, B. Can, and F. Schneider
Solid Earth, 6, 971–984, https://doi.org/10.5194/se-6-971-2015, https://doi.org/10.5194/se-6-971-2015, 2015
Short summary
Short summary
We observed with seismic data in the entire region of Turkey and surroundings the lithosphere–asthenosphere boundary (LAB). It is located generally between 80 and 100km depth outside the subduction zone. No change of the LAB depth was observed across the North and East Anatolian faults. The LAB of the subducting African plate is observed down to about 150km depth from the Aegean to the east of Cyprus, with a tear at Cyprus.
M.-T. Apoloner, G. Bokelmann, I. Bianchi, E. Brückl, H. Hausmann, S. Mertl, and R. Meurers
Adv. Geosci., 36, 77–80, https://doi.org/10.5194/adgeo-36-77-2014, https://doi.org/10.5194/adgeo-36-77-2014, 2014
A. Gerner and G. Bokelmann
Adv. Geosci., 36, 17–20, https://doi.org/10.5194/adgeo-36-17-2013, https://doi.org/10.5194/adgeo-36-17-2013, 2013
Cited articles
Bormann, P. and Wielandt, E.: Seismic Signals and Noise, in: New Manual of Seismological Observatory Practice 2 (NMSOP2), edited by: Bormann, P., Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, 1–62, https://doi.org/10.2312/GFZ.NMSOP-2_ch4, 2012.
Forbinger, T.: Recommendations for seismometer deployment and shielding, in: New Manual of Seismological Observatory Practice 2 (NMSOP-2), edited by: Bormann, P., Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, 1–10, https://doi.org/10.2312/GFZ.NMSOP-2_IS_5.4, 2012.
Kissling, E., Hetenyi, G., and AlpArray Working Group: AlpArray – Probing Alpine geodynamics with the next generation of geophysical experiments and techniques, Geophysical Research Abstracts, EGU General Assembly 2014, Vienna, Austria, 16, EGU2014–7065, 2014.
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C., and Wassermann, J.: ObsPy: a bridge for seismology into the scientific Python ecosystem, Computational Science & Discovery, 8, 014003, https://doi.org/10.1088/1749-4699/8/1/014003, 2015.
McNamara, D. E. and Buland, R. P.: Ambient noise levels in the continental United States, B. Seismol. Soc. Am., 94, 1517–1527, https://doi.org/10.1785/012003001, 2004.
Peterson, J.: Observations and modeling of seismic background noise, USGS Open-File report, 93–322, 1993.
Trnkoczy, A., Bormann, P., Hanka, W., Holcomb, L. G., Nigbor, R. L., Shinohara, M., Shiobara, H., and Suyehiro, K.: Site Selection, Preparation and Installation of Seismic Stations, in: New Manual of Seismological Observatory Practice 2 (NMSOP-2), edited by: Bormann, P., Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, 1–139, https://doi.org/10.2312/GFZ.NMSOP-2_ch7, 2012.
Short summary
Site selection is a crucial part of the work flow for installing seismic stations. Here, we report the preparations for a countrywide temporary seismic network in Austria. We present probabilistic power spectral density analysis to assess noise conditions at selected sites and show exemplary seismic events that were recorded by the preliminary network by the end of July 2015.
Site selection is a crucial part of the work flow for installing seismic stations. Here, we...