Trans-national earthquake early warning (EEW) in north-eastern Italy, Slovenia and Austria: first experience with PRESTo at the CE3RN network
M. Picozzi
CORRESPONDING AUTHOR
RISSC, Università "Federico II" di Napoli – AMRA, Naples, Italy
L. Elia
RISSC, Università "Federico II" di Napoli – AMRA, Naples, Italy
D. Pesaresi
CRS, OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Trieste, Italy
RISSC, Università "Federico II" di Napoli – AMRA, Naples, Italy
M. Mucciarelli
CRS, OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Trieste, Italy
ARSO – Agencija Republike Slovenije za Okolje, Ljubljana, Slovenia
W. Lenhardt
ZAMG – Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria
M. Živčić
ARSO – Agencija Republike Slovenije za Okolje, Ljubljana, Slovenia
Related authors
No articles found.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Gregor Rajh, Josip Stipčević, Mladen Živčić, Marijan Herak, Andrej Gosar, and the AlpArray Working Group
Solid Earth, 13, 177–203, https://doi.org/10.5194/se-13-177-2022, https://doi.org/10.5194/se-13-177-2022, 2022
Short summary
Short summary
We investigated the 1-D velocity structure of the Earth's crust in the NW Dinarides with inversion of arrival times from earthquakes. The obtained velocity models give a better insight into the crustal structure and show velocity variations among different parts of the study area. In addition to general structural implications and a potential for improving further work, the results of our study can also be used for routine earthquake location and for detecting errors in seismological bulletins.
Guido Maria Adinolfi, Raffaella De Matteis, Rita de Nardis, and Aldo Zollo
Solid Earth, 13, 65–83, https://doi.org/10.5194/se-13-65-2022, https://doi.org/10.5194/se-13-65-2022, 2022
Short summary
Short summary
We propose a methodology useful to evaluate (1) the reliability of a focal mechanism solution inferred by the inversion of seismological data and (2) the performance of a seismic network, operated to monitor natural or induced seismicity, to assess focal mechanism solutions. As a test case, we studied the focal mechanism reliability by using synthetic data computed for ISNet, a local seismic network monitoring the Irpinia fault system (southern Italy).
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Wolfgang A. Lenhardt
Hist. Geo Space. Sci., 12, 11–19, https://doi.org/10.5194/hgss-12-11-2021, https://doi.org/10.5194/hgss-12-11-2021, 2021
Short summary
Short summary
The historical development of the Geophysical Service of Austria, comprising the national geomagnetic, gravimetric and seismological services as well as the
Applied Geophysics Sectionlocated at the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna in Austria, is presented. Achievements, changes and challenges of the department from its modest beginning in 1851 until 2020 are described, including the Conrad Observatory.
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
Damiano Pesaresi, Helle Pedersen, and Angelo Strollo
Adv. Geosci., 51, 25–28, https://doi.org/10.5194/adgeo-51-25-2020, https://doi.org/10.5194/adgeo-51-25-2020, 2020
Florian Fuchs, Wolfgang Lenhardt, Götz Bokelmann, and the AlpArray Working Group
Earth Surf. Dynam., 6, 955–970, https://doi.org/10.5194/esurf-6-955-2018, https://doi.org/10.5194/esurf-6-955-2018, 2018
Short summary
Short summary
The work demonstrates how seismic networks installed in the Alps can be used for country-wide real-time monitoring of rockslide activity. We suggest simple methods that allow us to detect, locate, and characterize rockslides using the seismic signals they generate. We developed an automatic procedure to locate rockslides with kilometer accuracy over hundreds of kilometers of distance. Our findings highlight how seismic networks can help us to understand the triggering of rockslides.
Andrej Gosar
Nat. Hazards Earth Syst. Sci., 17, 925–937, https://doi.org/10.5194/nhess-17-925-2017, https://doi.org/10.5194/nhess-17-925-2017, 2017
Damiano Pesaresi, Wolfgang Lenhardt, Markus Rauch, Mladen Živčić, Rudolf Steiner, Michele Bertoni, and Heimo Delazer
Adv. Geosci., 41, 83–87, https://doi.org/10.5194/adgeo-41-83-2016, https://doi.org/10.5194/adgeo-41-83-2016, 2016
Short summary
Short summary
Since 2002 OGS in Italy, ZAMG in Austria and ARSO in Slovenia were exchanging seismic data in real time via internet. This was not good for civil defense scopes because internet is not reliable: therefore, in 2012 the Protezione Civile di Bolzano in Italy joined OGS, ZAMG and ARSO in the Interreg IV Italia-Austria "SeismoSAT" project aimed in connecting the seismic data centers in real time via satellite.
M. Mucciarelli, F. Donda, and G. Valensise
Nat. Hazards Earth Syst. Sci., 15, 2201–2208, https://doi.org/10.5194/nhess-15-2201-2015, https://doi.org/10.5194/nhess-15-2201-2015, 2015
Short summary
Short summary
While the debate is on the possibility that the 2012 Emilia quakes could have been triggered by human activity, we studied the inverse relationship between hydrocarbon and seismicity. Overlapping a data set of gas and oil wells with a database of seismic sources, we found that only 1/19 wells falling on the largest faults is currently productive, while the highest ratio of productive wells is found outside the seismogenic sources. In general, productive gas wells are anti-correlated with faults.
M. Mucciarelli
Nat. Hazards Earth Syst. Sci., 14, 2761–2765, https://doi.org/10.5194/nhess-14-2761-2014, https://doi.org/10.5194/nhess-14-2761-2014, 2014
D. Pesaresi, M. Romanelli, C. Barnaba, P. L. Bragato, and G. Durì
Adv. Geosci., 36, 61–67, https://doi.org/10.5194/adgeo-36-61-2014, https://doi.org/10.5194/adgeo-36-61-2014, 2014
D. Pesaresi, W. Lenhardt, M. Rauch, M. Živčić, R. Steiner, P. Fabris, and M. Bertoni
Adv. Geosci., 36, 57–60, https://doi.org/10.5194/adgeo-36-57-2014, https://doi.org/10.5194/adgeo-36-57-2014, 2014
R. Ditommaso, M. Vona, M. R. Gallipoli, and M. Mucciarelli
Nat. Hazards Earth Syst. Sci., 13, 1903–1912, https://doi.org/10.5194/nhess-13-1903-2013, https://doi.org/10.5194/nhess-13-1903-2013, 2013
Cited articles
Akkar, S. and Bommer, J. J.: Empirical prediction equations for peak ground velocity derived from strong-motions records from Europe and the Middle East, Bull. Seismol. Soc. Am., 97, 511–530, 2007.
Alcik, H., Özel, O., Apaydin, N., and Erdik, M.: A study on warning algorithms for Istanbul earthquake early warning system, Geophys. Res. Lett., 36, L00B05, https://doi.org/10.1029/2008GL036659, 2009.
Allen, R. M., Gasparini, P., Kamigaichi, O., and Böse, M.: The status of earthquake early warning around the world: an introductory overview, Seismol. Res. Lett., 80, 682–693, 2009.
Böse, M., Ionescu, C., and Wenzel, F.: Earthquake Early Warning for Bucharest, Romania: Novel and revised scaling relations, Geophys. Res. Lett., 34, L07302, https://doi.org/10.1029/2007GL029396, 2007.
Böse, M., Hauksson, E., Solanki, K., Kanamori, H., and Heaton, T. H.: Real-time testing of the on-site warning algorithm in Southern California and its performance during the July 29, 2008 Mw 5.4 Chino Hills earthquake, Geophys. Res. Lett., 36, L00B03, https://doi.org/10.1029/2008GL036366, 2009.
Bragato, P. L., Costa, G., Gallo, A., Gosar, A., Horn, N., Lenhardt, W., Mucciarelli, M., Pesaresi, D., Steiner, R., Suhadolc, P., Tiberi, L., Živčić, M., and Zoppé, G.: The Central and Eastern European Earthquake Research Network – CE3RN, EGU General Assembly 2014, 27 April–2 May 2014, Vienna, Austria, 2014.
Carulli, G. B. and Slejko, D.: The 1976 Friuli (NE Italy) earthquake, Giornale di Geologia Applicata, 1, 147–156, 2005.
Colombelli, S., Amoroso, O., Zollo, A., and Kanamori, H.: Test of a Threshold-Based Earthquake Early Warning Using Japanese Data, Bull. Seismol. Soc. Am., 102, 1266–1275, https://doi.org/10.1785/0120110149, 2012..
Espinosa-Aranda, J. M., Cuellar, A., Garcia, A., Ibarrola, G., Islas, R., Maldonado, S., and Rodriguez, F. H.: Evolution of the Mexican Seismic Alert System (SASMEX), Seismol. Res. Lett., 80, 694–706, 2009.
Faenza, L., Lauciani, V., and Michelini, A.: Rapid determination of the shakemaps for the L'Aquila main shock: a critical analysis, Bollettino di Geofisica Teorica ed Applicata, 52, 407–425, https://doi.org/10.4430/bgta0020, 2011.
Giorgetti, F.: Isoseismal map of the May 6, 1976 Friuli earthquake, Boll. Geofis. Teor. Appl., 19, 707–714, 1976.
Goltz, J. D. L.: Introducing earthquake early warning in California: A summary of social science and public policy issues, technical report, Governor's Off. of Emergency Serv., Pasadena, Calif., 2002.
Gruppo di lavoro MPS: Redazione della mappa di pericolosita` sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003, Rapporto conclusivo per il dipartimento di Protezione Civile, INGV, aprile 2004, Milano, Roma, 65 pp. + 5 appendici, available at: http://zonesismiche.mi.ingv.it/elaborazioni/ (last access: 31 March 2015), 2004.
Heinloo, A.: SeedLink design notes and configuration tips, http://geofon.gfz-potsdam.de/geofon/seiscomp.de/geofon/seiscomp/seedlink.html (last access: 31 March 2015), 2000.
Horiuchi, S., Negishi, H., Abe, K., Kamimura, A., and Fujinawa, Y.: An automatic processing system for broadcasting system earthquake alarms, Bull. Seismol. Soc. Am., 95 347–353, 2005.
Hoshiba, M.: Real-time correction of frequency-dependent site amplification factors for application to Earthquake Early Warning, Bull. Seismol. Soc. Am., 103, 3179–3188, https://doi.org/10.1785/0120130060, 2013.
Iannaccone, G., Zollo, A., Elia, L., Convertito, V., Satriano, C., Martino, C., Festa, G., Lancieri, M., Bobbio, A., Stabile, T. A., Vassallo, M., and Emolo, A.: A prototype system for earthquake early-warning and alert management in southern Italy, Bull. Earthq. Eng., 8, 1105–1129, https://doi.org/10.1007/s10518-009-9131-8, 2010.
Lancieri, M. and Zollo, A.: Bayesian approach to the real-time estimation of magnitude from the early P and S wave displacement peaks, J. Geophys. Res., 113, B12302, https://doi.org/10.1029/2007JB005386, 2008.
Lomax, A., Satriano, C., and Vassallo, M.: Automatic picker developments and optimization: FilterPicker – a robust, broadband picker for real-time seismic monitoring and earthquake early-warning, Seismol. Res. Lett., 83, 531–540, https://doi.org/10.1785/gssrl.83.3.531, 2012.
Luzi, L., Hailemikael, S., Bindi, D., Pacor, F., Mele, F., and Sabetta, F.: ITACA (ITalian ACcelerometric Archive): a web portal for the dissemination of Italian strong-motion data, Seismol. Res. Lett., 79, 716–722, 2008.
OGS: Bollettino della Rete Sismometrica del Friuli–Venezia Giulia e del Veneto, OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Centro di Ricerche Sismologiche, Udine, Italy, 1995–2013.
Pacor, F., Paolucci, R., Ameri, G., Massa, M., and Puglia, R.: Italian strong motion records in ITACA: overview and record processing, Bull. Earthq. Eng., 9, 1723–1739, https://doi.org/10.1007/s10518-011-9327-6, 2011.
Peng, H. S., Wu, Z. L., Wu, Y. M., Yu, S. M., Zhang, D. N., and Huang, W. H.: Developing a prototype earthquake early warning system in the Beijing Capital Region, Seismol. Res. Lett., 82, 394–403, 2011.
Picozzi, M., Colombelli, S., Zollo, A., Carranza, M., and Buforn, E.: A Threshold-Based Earthquake Early-Warning System for Offshore Events in Southern Iberia, Pure Appl. Geophys., https://doi.org/10.1007/s00024-014-1009-2, in press, 2014.
Picozzi, M., Emolo, A., Martino, C., Zollo, A., Miranda, N., Verderame, G., Boxberger, T., and the REAKT Working Group: Earthquake Early Warning System for Schools: A Feasibility Study in Southern Italy, Seismol. Res. Lett., 86, 398–412, https://doi.org/10.1785/0220140194, 2015a.
Picozzi, M., Zollo, A., Brondi, P., Colombelli, S., Elia, L., and Martino, C.: Exploring the Feasibility of a Nation-Wide Earthquake Early Warning System in Italy, J. Geophys. Res.-Solid, https://doi.org/10.1002/2014JB011669, in press, 2015b.
Satriano, C., Lomax, A., and Zollo, A.: Real-Time Evolutionary Earthquake Location for Seismic Early Warning, Bull. Seismol. Soc. Am., 98, 1482–1494, https://doi.org/10.1785/0120060159, 2008.
Satriano, C., Wu, Y.-M., Zollo, A., and Kanamori, H.: Earthquake early warning: Concepts, methods and physical grounds, Soil Dynam. Earthq. Eng., 31, 106–108, https://doi.org/10.1016/j.soildyn.2010.07.007, 2010.
Satriano, C., Elia, L., Martino, C., Lancieri, M., Zollo, A., and Iannaccone, G.: PRESTo, the earthquake early warning system for Southern Italy: concepts, capabilities and future perspectives, Soil. Dyn. Earthq. Eng., 31, 137–153, https://doi.org/10.1016/j.soildyn.2010.06.008, 2011.
SeisComP: Seismological communication processor, 2009, http://geofon.gfz-potsdam.de/geofon/seiscompS, last access: January 2010.
Steim, J. M. and Reimiller, R. D.: Timeliness of Data Delivery from Q330 Systems, Seismol. Res. Lett., 85, 844–851, https://doi.org/10.1785/0220120170, 2014.
Wu, Y. M. and Zhao, L.: Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophys. Res. Lett., 33, L16312, https://doi.org/10.1029/2006GL026871, 2006.
Zollo, A., Amoroso, O., Lancieri, M., Wu, Y. M., and Kanamori, H.: A threshold-based earthquake early warning using dense accelerometer networks, Geophys. J. Int., 183, 963–974, https://doi.org/10.1111/j.1365-246X.2010.04765.x, 2010.
Zollo, A., Colombelli, S., Elia, L., Emolo, A., Festa, G., Iannaccone, G., Martino, C., and Gasparini, P.: An Integrated Regional and On-Site Earthquake Early Warning System for Southern Italy: Concepts, Methodologies and Performances, in: Early Warning for Geological Disasters, Advanced Technologies in Earth Sciences, edited by: Wenzel, F. and Zschau, J., Springer, Berlin, Heidelberg, 117 pp., https://doi.org/10.1007/978-3-642-12233-0_7, 2014.