Using the Firefly optimization method to weight an ensemble of rainfall forecasts from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS)
A. F. dos Santos
National Institute for Space Research, Center for Weather Forecasting and Climate Studies, Cachoeira Paulista, Brazil
S. R. Freitas
National Institute for Space Research, Center for Weather Forecasting and Climate Studies, Cachoeira Paulista, Brazil
J. G. Z. de Mattos
National Institute for Space Research, Center for Weather Forecasting and Climate Studies, Cachoeira Paulista, Brazil
H. F. de Campos Velho
Laboratory for Computing and Applied Mathematics, National Institute for Space Research, São José dos Campos, SP, Brazil
M. A. Gan
National Institute for Space Research, Center for Weather Forecasting and Climate Studies, Cachoeira Paulista, Brazil
E. F. P. da Luz
Laboratory for Computing and Applied Mathematics, National Institute for Space Research, São José dos Campos, SP, Brazil
G. A. Grell
National Oceanic and Atmospheric Administration, Boulder, CO, USA
Related authors
Saulo R. Freitas, Jairo Panetta, Karla M. Longo, Luiz F. Rodrigues, Demerval S. Moreira, Nilton E. Rosário, Pedro L. Silva Dias, Maria A. F. Silva Dias, Enio P. Souza, Edmilson D. Freitas, Marcos Longo, Ariane Frassoni, Alvaro L. Fazenda, Cláudio M. Santos e Silva, Cláudio A. B. Pavani, Denis Eiras, Daniela A. França, Daniel Massaru, Fernanda B. Silva, Fernando C. Santos, Gabriel Pereira, Gláuber Camponogara, Gonzalo A. Ferrada, Haroldo F. Campos Velho, Isilda Menezes, Julliana L. Freire, Marcelo F. Alonso, Madeleine S. Gácita, Maurício Zarzur, Rafael M. Fonseca, Rafael S. Lima, Ricardo A. Siqueira, Rodrigo Braz, Simone Tomita, Valter Oliveira, and Leila D. Martins
Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017, https://doi.org/10.5194/gmd-10-189-2017, 2017
Short summary
Short summary
We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) where different previous versions for weather, chemistry, and the carbon cycle were unified in a single harmonized software system. This version also has a new set of state-of-the-art physical parametrizations and higher computational parallel and memory usage efficiency. BRAMS has been applied for research and operational weather and air quality forecasting, largely in South America.
Haiqin Li, Georg A. Grell, Ravan Ahmadov, Li Zhang, Shan Sun, Jordan Schnell, and Ning Wang
Geosci. Model Dev., 17, 607–619, https://doi.org/10.5194/gmd-17-607-2024, https://doi.org/10.5194/gmd-17-607-2024, 2024
Short summary
Short summary
We developed a simple and realistic method to provide aerosol emissions for aerosol-aware microphysics in a numerical weather forecast model. The cloud-radiation differences between the experimental (EXP) and control (CTL) experiments responded to the aerosol differences. The strong positive precipitation biases over North America and Europe from the CTL run were significantly reduced in the EXP run. This study shows that a realistic representation of aerosol emissions should be considered.
Li Pan, Partha S. Bhattacharjee, Li Zhang, Raffaele Montuoro, Barry Baker, Jeff McQueen, Georg A. Grell, Stuart A. McKeen, Shobha Kondragunta, Xiaoyang Zhang, Gregory J. Frost, Fanglin Yang, and Ivanka Stajner
Geosci. Model Dev., 17, 431–447, https://doi.org/10.5194/gmd-17-431-2024, https://doi.org/10.5194/gmd-17-431-2024, 2024
Short summary
Short summary
A GEFS-Aerosols simulation was conducted from 1 September 2019 to 30 September 2020 to evaluate the model performance of GEFS-Aerosols. The purpose of this study was to understand how aerosol chemical and physical processes affect ambient aerosol concentrations by placing aerosol wet deposition, dry deposition, reactions, gravitational deposition, and emissions into the aerosol mass balance equation.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Li Zhang, Raffaele Montuoro, Stuart A. McKeen, Barry Baker, Partha S. Bhattacharjee, Georg A. Grell, Judy Henderson, Li Pan, Gregory J. Frost, Jeff McQueen, Rick Saylor, Haiqin Li, Ravan Ahmadov, Jun Wang, Ivanka Stajner, Shobha Kondragunta, Xiaoyang Zhang, and Fangjun Li
Geosci. Model Dev., 15, 5337–5369, https://doi.org/10.5194/gmd-15-5337-2022, https://doi.org/10.5194/gmd-15-5337-2022, 2022
Short summary
Short summary
The NOAA’s air quality predictions contribute to protecting lives and health in the US, which requires sustainable development and improvement of forecast systems. GEFS-Aerosols v1 has been developed in a collaboration between the NOAA research laboratories for operational forecast since September 2020 in the NCEP. The predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational system.
Li Zhang, Georg A. Grell, Stuart A. McKeen, Ravan Ahmadov, Karl D. Froyd, and Daniel Murphy
Geosci. Model Dev., 15, 467–491, https://doi.org/10.5194/gmd-15-467-2022, https://doi.org/10.5194/gmd-15-467-2022, 2022
Short summary
Short summary
Applying the chemistry package from WRF-Chem into the Flow-following finite-volume Icosahedra Model, we essentially make it possible to explore the importance of different levels of complexity in gas and aerosol chemistry, as well as in physics parameterizations, for the interaction processes in global modeling systems. The model performance validated by the Atmospheric Tomography Mission aircraft measurements in summer 2016 shows good performance in capturing the aerosol and gas-phase tracers.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Saulo R. Freitas, Georg A. Grell, and Haiqin Li
Geosci. Model Dev., 14, 5393–5411, https://doi.org/10.5194/gmd-14-5393-2021, https://doi.org/10.5194/gmd-14-5393-2021, 2021
Short summary
Short summary
Convection parameterization (CP) is a component of atmospheric models aiming to represent the statistical effects of subgrid-scale convective clouds. Because the atmosphere contains circulations with a broad spectrum of scales, the truncation needed to run models in computers requires the introduction of parameterizations to account for processes that are not explicitly resolved. We detail recent developments in the Grell–Freitas CP, which has been applied in several regional and global models.
Alexander Ukhov, Ravan Ahmadov, Georg Grell, and Georgiy Stenchikov
Geosci. Model Dev., 14, 473–493, https://doi.org/10.5194/gmd-14-473-2021, https://doi.org/10.5194/gmd-14-473-2021, 2021
Short summary
Short summary
We discuss and evaluate the effects of inconsistencies found in the WRF-Chem code when using the GOCART module. First, PM surface concentrations were miscalculated. Second, dust optical depth was underestimated by 25 %–30 %. Third, an inconsistency in the process of gravitational settling led to the overestimation of dust column loadings by 4 %–6 %, PM10 by 2 %–4 %, and the rate of gravitational dust settling by 5 %–10 %. We also presented diagnostics that can be used to estimate these effects.
Fernando Santos, Karla Longo, Alex Guenther, Saewung Kim, Dasa Gu, Dave Oram, Grant Forster, James Lee, James Hopkins, Joel Brito, and Saulo Freitas
Atmos. Chem. Phys., 18, 12715–12734, https://doi.org/10.5194/acp-18-12715-2018, https://doi.org/10.5194/acp-18-12715-2018, 2018
Short summary
Short summary
We investigated the impact of biomass burning on the chemical composition of trace gases in the Amazon. The findings corroborate the influence of biomass burning activity not only on direct emissions of particulate matter but also on the oxidative capacity to produce secondary organic aerosol. The scientists plan to use this information to improve the numerical model simulation with a better representativeness of the chemical processes, which can impact on global climate prediction.
Paulo R. Teixeira, Saulo R. de Freitas, Francis W. Correia, and Antonio O. Manzi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-81, https://doi.org/10.5194/gmd-2018-81, 2018
Publication in GMD not foreseen
Short summary
Short summary
Emissions of gases and particulates in urban areas are associated with a mixture of various sources, both natural and anthropogenic. Understanding and quantifying these emissions is necessary in studies of climate change, local air pollution issues, and weather modification. This work will also contribute to improved air quality numerical simulations, provide more accurate scenarios for policymakers and regulatory agencies to develop strategies for controlling the vehicular emissions.
Demerval S. Moreira, Karla M. Longo, Saulo R. Freitas, Marcia A. Yamasoe, Lina M. Mercado, Nilton E. Rosário, Emauel Gloor, Rosane S. M. Viana, John B. Miller, Luciana V. Gatti, Kenia T. Wiedemann, Lucas K. G. Domingues, and Caio C. S. Correia
Atmos. Chem. Phys., 17, 14785–14810, https://doi.org/10.5194/acp-17-14785-2017, https://doi.org/10.5194/acp-17-14785-2017, 2017
Short summary
Short summary
Fire in the Amazon forest produces a large amount of smoke that is released into the atmosphere and covers a large portion of South America for about 3 months each year. The smoke affects the energy and CO2 budgets. Using a numerical atmospheric model, we demonstrated that the smoke changes the forest from a source to a sink of CO2 to the atmosphere. The smoke ultimately acts to at least partially compensate for the forest carbon lost due to fire emissions.
Madeleine Sánchez Gácita, Karla M. Longo, Julliana L. M. Freire, Saulo R. Freitas, and Scot T. Martin
Atmos. Chem. Phys., 17, 2373–2392, https://doi.org/10.5194/acp-17-2373-2017, https://doi.org/10.5194/acp-17-2373-2017, 2017
Short summary
Short summary
This study uses an adiabatic cloud model to simulate the activation of smoke aerosol particles in the Amazon region as cloud condensation nuclei (CCN). The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. Our findings on uncertainties and sensitivities provide guidance on appropriate simplifications that can be used for modeling of smoke aerosols within general circulation models.
Saulo R. Freitas, Jairo Panetta, Karla M. Longo, Luiz F. Rodrigues, Demerval S. Moreira, Nilton E. Rosário, Pedro L. Silva Dias, Maria A. F. Silva Dias, Enio P. Souza, Edmilson D. Freitas, Marcos Longo, Ariane Frassoni, Alvaro L. Fazenda, Cláudio M. Santos e Silva, Cláudio A. B. Pavani, Denis Eiras, Daniela A. França, Daniel Massaru, Fernanda B. Silva, Fernando C. Santos, Gabriel Pereira, Gláuber Camponogara, Gonzalo A. Ferrada, Haroldo F. Campos Velho, Isilda Menezes, Julliana L. Freire, Marcelo F. Alonso, Madeleine S. Gácita, Maurício Zarzur, Rafael M. Fonseca, Rafael S. Lima, Ricardo A. Siqueira, Rodrigo Braz, Simone Tomita, Valter Oliveira, and Leila D. Martins
Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017, https://doi.org/10.5194/gmd-10-189-2017, 2017
Short summary
Short summary
We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) where different previous versions for weather, chemistry, and the carbon cycle were unified in a single harmonized software system. This version also has a new set of state-of-the-art physical parametrizations and higher computational parallel and memory usage efficiency. BRAMS has been applied for research and operational weather and air quality forecasting, largely in South America.
Carolin Walter, Saulo R. Freitas, Christoph Kottmeier, Isabel Kraut, Daniel Rieger, Heike Vogel, and Bernhard Vogel
Atmos. Chem. Phys., 16, 9201–9219, https://doi.org/10.5194/acp-16-9201-2016, https://doi.org/10.5194/acp-16-9201-2016, 2016
Short summary
Short summary
Buoyancy produced by vegetation fires can lead to substantial plume rise with consequences for the dispersion of aerosol emitted by the fires. To study this effect a 1-D plume rise model was included into the regional online integrated model system COSMO-ART. Comparing model results and satellite data for a case study of 2010 Canadian wildfires shows, that the plume rise model outperforms prescribed emission height. The radiative impact of the aerosol leads to a pronounced temperature change.
Gabriel Pereira, Ricardo Siqueira, Nilton E. Rosário, Karla L. Longo, Saulo R. Freitas, Francielle S. Cardozo, Johannes W. Kaiser, and Martin J. Wooster
Atmos. Chem. Phys., 16, 6961–6975, https://doi.org/10.5194/acp-16-6961-2016, https://doi.org/10.5194/acp-16-6961-2016, 2016
Short summary
Short summary
Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. However, results indicate that emission derived via similar methods tend to agree with one other, but aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation.
R. Paugam, M. Wooster, S. Freitas, and M. Val Martin
Atmos. Chem. Phys., 16, 907–925, https://doi.org/10.5194/acp-16-907-2016, https://doi.org/10.5194/acp-16-907-2016, 2016
Short summary
Short summary
Landscape fire plume height controls fire emissions release in the atmosphere, in particular their transport that may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents. Here, we review how such landscape-scale fire smoke plume injection heights are represented in large-scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system.
L. Zhang, D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, O. Torres, C. Ahn, Z. Lu, J. Cao, and Y. Mao
Atmos. Chem. Phys., 15, 10281–10308, https://doi.org/10.5194/acp-15-10281-2015, https://doi.org/10.5194/acp-15-10281-2015, 2015
Short summary
Short summary
We attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Despite the limitations and uncertainties, using OMI AAOD to constrain BC sources we are able to improve model representation of BC distributions, particularly over China.
P. Tuccella, G. Curci, G. A. Grell, G. Visconti, S. Crumeyrolle, A. Schwarzenboeck, and A. A. Mensah
Geosci. Model Dev., 8, 2749–2776, https://doi.org/10.5194/gmd-8-2749-2015, https://doi.org/10.5194/gmd-8-2749-2015, 2015
Short summary
Short summary
A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative schemes in the WRF-Chem model. The new chemistry was evaluated on a cloud-resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI campaign, and complemented with satellite data from MODIS. Sensitivity tests have been performed to study the impact of SOA on cloud prediction and development.
M. Bocquet, H. Elbern, H. Eskes, M. Hirtl, R. Žabkar, G. R. Carmichael, J. Flemming, A. Inness, M. Pagowski, J. L. Pérez Camaño, P. E. Saide, R. San Jose, M. Sofiev, J. Vira, A. Baklanov, C. Carnevale, G. Grell, and C. Seigneur
Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, https://doi.org/10.5194/acp-15-5325-2015, 2015
Short summary
Short summary
Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of concentrations, and perform inverse modeling. Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. We review here the current status of data assimilation in atmospheric chemistry models, with a particular focus on future prospects for data assimilation in CCMM.
R. Paugam, M. Wooster, J. Atherton, S. R. Freitas, M. G. Schultz, and J. W. Kaiser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-9815-2015, https://doi.org/10.5194/acpd-15-9815-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The transport of Biomass Burning emissions in Chemical Transport Model rely on parametrization of plumes injection height. Using fire observation selected to ensure match-up of fire-atmosphere-plume dynamics; a popular plume rise model was improved and optimized. The resulting model shows response to the effect of atmospheric stability consistent with previous findings and is able to predict higher injection height than any other tested parametrizations, giving a closer match with observation.
S. Archer-Nicholls, D. Lowe, E. Darbyshire, W. T. Morgan, M. M. Bela, G. Pereira, J. Trembath, J. W. Kaiser, K. M. Longo, S. R. Freitas, H. Coe, and G. McFiggans
Geosci. Model Dev., 8, 549–577, https://doi.org/10.5194/gmd-8-549-2015, https://doi.org/10.5194/gmd-8-549-2015, 2015
Short summary
Short summary
The regional WRF-Chem model was used to study aerosol particles from biomass burning in South America. The modelled estimates of fire plume injection heights were found to be too high, with serious implications for modelled aerosol vertical distribution, transport and impacts on local climate. A modified emission scenario was developed which improved the predicted injection height. Model results were compared and evaluated against in situ measurements from the 2012 SAMBBA flight campaign.
M. M. Bela, K. M. Longo, S. R. Freitas, D. S. Moreira, V. Beck, S. C. Wofsy, C. Gerbig, K. Wiedemann, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 15, 757–782, https://doi.org/10.5194/acp-15-757-2015, https://doi.org/10.5194/acp-15-757-2015, 2015
Short summary
Short summary
In the Amazon Basin, gases that lead to the formation of ozone (O3), an air pollutant and greenhouse gas, are emitted from fire, urban and biogenic sources. This study presents the first basin wide aircraft measurements of O3 during the dry-to-wet and wet-to-dry transition seasons, which show extremely low values above undisturbed forest and increases from fires. This work also demonstrates the capabilities and limitations of regional atmospheric chemistry models in representing O3 in Amazonia.
J. Brito, L. V. Rizzo, W. T. Morgan, H. Coe, B. Johnson, J. Haywood, K. Longo, S. Freitas, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, https://doi.org/10.5194/acp-14-12069-2014, 2014
Short summary
Short summary
This paper details the physical--chemical characteristics of aerosols in a region strongly impacted by biomass burning in the western part of the Brazilian Amazon region. For such, a large suite of state-of-the-art instruments for realtime analysis was deployed at a ground site. Among the key findings, we observe the strong prevalence of organic aerosols associated to fire emissions, with important climate effects, and indications of its very fast processing in the atmosphere.
M. Pagowski, Z. Liu, G. A. Grell, M. Hu, H.-C. Lin, and C. S. Schwartz
Geosci. Model Dev., 7, 1621–1627, https://doi.org/10.5194/gmd-7-1621-2014, https://doi.org/10.5194/gmd-7-1621-2014, 2014
G. A. Grell and S. R. Freitas
Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, https://doi.org/10.5194/acp-14-5233-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela
Geosci. Model Dev., 6, 1389–1405, https://doi.org/10.5194/gmd-6-1389-2013, https://doi.org/10.5194/gmd-6-1389-2013, 2013
D. S. Moreira, S. R. Freitas, J. P. Bonatti, L. M. Mercado, N. M. É. Rosário, K. M. Longo, J. B. Miller, M. Gloor, and L. V. Gatti
Geosci. Model Dev., 6, 1243–1259, https://doi.org/10.5194/gmd-6-1243-2013, https://doi.org/10.5194/gmd-6-1243-2013, 2013
V. Beck, C. Gerbig, T. Koch, M. M. Bela, K. M. Longo, S. R. Freitas, J. O. Kaplan, C. Prigent, P. Bergamaschi, and M. Heimann
Atmos. Chem. Phys., 13, 7961–7982, https://doi.org/10.5194/acp-13-7961-2013, https://doi.org/10.5194/acp-13-7961-2013, 2013
M. Stuefer, S. R. Freitas, G. Grell, P. Webley, S. Peckham, S. A. McKeen, and S. D. Egan
Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, https://doi.org/10.5194/gmd-6-457-2013, 2013
N. E. Rosário, K. M. Longo, S. R. Freitas, M. A. Yamasoe, and R. M. Fonseca
Atmos. Chem. Phys., 13, 2923–2938, https://doi.org/10.5194/acp-13-2923-2013, https://doi.org/10.5194/acp-13-2923-2013, 2013
S. Strada, S. R. Freitas, C. Mari, K. M. Longo, and R. Paugam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-6-721-2013, https://doi.org/10.5194/gmdd-6-721-2013, 2013
Preprint withdrawn
Cited articles
Anthes, R. A., Kuo, Y.-H., Hsie, E.-Y., Low-Nam, S., and Bettge, T. W.: Estimation of skill and uncertainty in regional numerical models, Q. J. Roy. Meteorol. Soc., 115, 763–806, https://doi.org/10.1002/qj.49711548803, 1989.
Apostolopoulos, T. and Vlachos, A.: Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem, Int. J. Comb., 2011, 1–23, https://doi.org/10.1155/2011/523806, 2011.
Arakawa, A.: The Cumulus Parameterization Problem: Past, Present, and Future, J. Climate, 17, 2493–2525, 2004.
Arakawa, A. and Schubert, W. H.: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I, J. Atmos. Sci., 31, 674–701, 1974.
Bao, J.-W., Grell, E. D., Grell, G. A., and Michelson, S.: Application of the Grell-Devenyi Convective Parameterization in Ensemble QPFs, available at: http://www.mmm.ucar.edu/wrf/users/workshops/WS2007/abstracts/p1-25 Bao.pdf, last access: 9 January 2011.
Brown, J. M.: Mesoscale Unsaturated Downdrafts Driven by Rainfall Evaporation: A Numerical Study, J. Atmos. Sci., 36, 313–338, 1979.
Cane, D. and Milelli, M.: Multimodel SuperEnsemble technique for quantitative p recipitation forecasts in Piemonte region, Nat. Hazards Earth Syst. Sci., 10, 265–273, https://doi.org/10.5194/nhess-10-265-2010, 2010.
Casanova, S. and Ahrens, B.: On the Weighting of Multimodel Ensenbles in Seasonal and Short-Range Weather Forecasting, Mon. Weather Rev., 137, 3811–3822, 2009.
Casarin, D. P. and Kousky, V. E.: Anomalias de precipita\c cão no sul do Brasil e varia\c cões na circula\c cão atmosférica, Precipitation anomalies over Southern Brazil and variations in he atmospheric circulation, Rev. Bras. Meteor., 1, 83–90, 1986.
Chou, S. C. and da Silva, M. G. A. J.: Objective Evaluation of the Eta Model Precipitation Forecasts over South America, Revista Climanálise, 01, 1–17, 1999.
Chou, S. C., Tanajura, C. A. S., Xue, Y., and Nobre, C. A.: Validation of the coupled Eta/SSiB model over South America, J. Geophys. Res., 107, 56(1)–56(21), 2002.
Climanálise: Climanálise: Boletim de Monitoramento e Análise Climática, São José dos Campos, 2006.
Emanuel, K. and Raymond, D. J. (Eds.): The Representation of Cumulus Convection in Numerical Models of the Atmosphere, vol. 24 of Meteor. Mono., Amer. Meteor. Soc., Boston, 1993.
Figueroa, S. N. and Nobre, C. A.: Precipitation distribution over central and western tropical South America, Climanálise, 5, 36–45, 1990.
Frank, W. M.: The Cumulus Parameterization Problem, Mon. Weather Rev., 111, 1859–1871, 1983.
Frank, W. M. and Cohen, C.: Simulation of Tropical Convective Systems. Part I: A Cumulus Parameterization, J. Atmos. Sci., 44, 3787–3799, 1987.
Freitas, S. R., Longo, K. M., Silva Dias, M. A. F., Chatfield, R., Silva Dias, P., Artaxo, P., Andreae, M. O., Grell, G., Rodrigues, L. F., Fazenda, A., and Panetta, J.: The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation, Atmos. Chem. Phys., 9, 2843–2861, https://doi.org/10.5194/acp-9-2843-2009, 2009.
Gan, M. A. and Moscati, M. C. L.: Esta\c cão chuvosa de 2001/02 na Região Centro-Oeste do Brasil, Rev. Bras. Meteor., 18, 181–194, 2003.
Gan, M. A., Kousky, V. E., and Ropelewski, C. F.: The South America Monsoon Circulation and Its Relationship to Rainfall over West-Central Brazil, J. Climate, 17, 47–66, 2004.
Grabowski, W. W. and Smolarkiewicz, P. K.: CRCP: a Cloud Resolving Convection Parameterizaiton for modeling the tropical convecting atmosphere, Physica D, 133, 171–178, 1999.
Grell, A. G.: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations, Mon. Weather Rev., 121, 764–787, 1993.
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 38(1)–38(4), https://doi.org/10.1029/2002GL015311, 2002.
Grell, G. A., Kuo, Y.-H., and Pasch, R.: Semi-prognostic tests of cumulus parameterization schemes in the middle latitudes, Mon. Weather Rev., 119, 5–31, 1991.
Hamill, T. M.: Hypothesis Tests for Evaluating Numerical Precipitation Forecasts, Weather Forecast., 14, 155–167, 1999.
Herdies, D. L., Silva, A., Silva Dias, M. A. F., and Ferreira, R. N.: Moisture budget of the bimodal pattern of the summer circulation over South America, J. Geophys. Res., 107, 42(1)–42(-10), 2002.
Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H., and Mitchell, H. L.: A System Simulation Approach to Ensemble Prediction, Mon. Weather Rev., 124, 1225–1242, 1996.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and Wolff, D. B.:, The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scale, J. Hydrometeorol., 8, 38–55, 2007.
IAC: Microphysical processes of warm clouds, http://www.iac.ethz.ch/edu/courses/bachelor/vertiefung/atmospheric_physics/Script-2012/Script-warm-microphysics.pdf, last access: 6 June 2013.
Jones, T. R. and Randall, D. A.: Quantifying the limits of convective parameterizations, J. Geophys. Res., 116, 1–19, 2011.
Kain, J. S. and Fritsch, J. M.: The role of the Convective "Trigger Function" in Numerical Forecasts of Mesoscale Convective Systems, Meteorol. Atmos. Phys., 49, 93–106, https://doi.org/10.1007/BF01025402, 1992.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: The Kain–Fritsch scheme, edited by: Emanuel, K. A. and Raymond, D. J., Meteor. Monogr., American Meteorological Society, Boston, 24, 165–170, 1993.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.: Optimization by Simulated Annealing, Science, 220, 671–680, https://doi.org/10.1126/science.220.4598.671, 1983.
Kodama, Y. M.: Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part-I: Characteristics of subtropical frontal zones, J. Meteorol. Soc. Jpn., 70, 813–836, 1992.
Krishnamurti, T. N., Low-Nam, S., and Pasch, R.: Cumulus Parameterization and Rainfall Rates II, Mon. Weather Rev., 111, 815–828, 1983.
Krishnamurti, T. N., Kishtawal, C. M., LaRow, T. E., Bachiochi, D. R., Zhang, Z., Williford, C. E., Gadgil, S., and Surendran, S.: Improved Weather and Seasonal Climate Forecasts from Multimodel Superensemble, Science, 285, 1548–1550, https://doi.org/10.1126/science.285.5433.1548, 1999.
Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, E., Gadgil, S., and Surendran, S.: Multimodel Ensemble Forecasts for Weather and Seasonal Climate, J. Climate, 13, 4196–4216, https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2, 2000.
Krishnamurti, T. N., Stefanova, L., Chakraborty, A., Vijaya Kumar, T. S. V., Cocke, S., Bachiochi, D. R., and Mackey, B.: Seasonal Forecasts of precipitation anomalies for North American and Asian Monsoons, J. Meteorol. Soc. Jpn., 80, 1415–1426, 2002.
Kuo, H. L.: Further studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow, J. Atmos. Sci., 31, 1232–1240, 1974.
Lin, J. W.-B. and Neelin, J. D.: Toward stochastic deep convective parameterization in general circulation models, Geophys. Res. Lett., 30, 11(1)–11(4), https://doi.org/10.1029/2002GL016203, 2003.
Lorenz, E. N.: Deterministic Nonperiodic Flow, J. Atmos. Sci., 20, 130–141, 1963.
Lorenz, E. N.: A study of the predictability of a 28-variable atmospheric model, Tellus, 17, 321–333, 1965.
Lukasik, S. and Zak, S.: Firefly Algorithm for Continuous Constrainet Optimization Tasks, in: Proceedings of the International Conference on Computer and Computational Intelligence, vol. 5796, Wroclaw, Poland, 97–106, 2009.
Luz, E. F. P.: Meta-heurísticas paralelas na solução de problemas inversos, Doutorado em computação aplicada, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, 2012.
Luz, E. F. P., Becceneri, J. C., and de Campos Velho, H. F.: Conceitualização do algoritmo vagalume e sua aplicação na estimativa de condição inicial da equação de calor, in: Anais do XI Workshop de Computação Aplicada do Laboratório Associado de Computação e Matemática Aplicada, XI WORCAP, São José dos Campos, SP, 2009.
Maddox, R. A., Chappell, C. F., and Hoxit, L. R.: Synoptic and Meso-α Scale Aspects of Flash Flood Events, B. Am. Meteorol. Soc., 60, 115–123, 1979.
Mason, I.: Dependence of the Critical Success Index on sample climate and threshold probability, Austr. Meteorol. Mag., 37, 75–81, 1989.
Mesinger, F.: Improvements in Quantitative Precipitation Forecasting with the Eta Regional Model at the National Centers for Environmental Prediction: The 48-km Upgrade, B. Am. Meteorol. Soc., 77, 2637–2649, 1996.
Mullen, S. L. and Baumhefner, D. P.: Monte Carlo Simulations of Explosive Cyclogenesis, Mon. Weather Rev., 122, 1548–1567, 1994.
Nobre, P. and Srukla, J.: Variations of Sea Surface Temperature, Wind Stress and Rainfall over the Tropical Atlantic and South America, J. Climate, 9, 2464–2479, 1996.
Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking the Cloud Parameterization Deadlock, B. Am. Meteorol. Soc., 84, 1547–1564, 2003.
Rao, V. B. and Hada, K.: Characteristics of Rainfall over Brazil: Annual Variations and Connections with the Southern Oscillation, Theor. Appl. Climatol., 42, 81–91, 1990.
Reynolds, C. A., Webster, P. J., and Kalnay, E.: Random Error Growth in NMC's Global Forecasts, Mon. Weather Rev., 122, 1281–1305, 1994.
Rogers, E., Deaven, D., and Dimego, G. J.: The Regional Analysis System for the Operational "Early" Eta Model: Original 80-km Configuration and Recent Changes, Weather Forecast., 10, 810–825, 1995.
Rozante, J. R., Moreira, D. S., de Goncalves, L. G. G., and Vila, D. A.: Combining TRMM and Surface Observations of Precipitation: Technique and Validation over South America, Weather Forecast., 25, 885–894, https://doi.org/10.1175/2010WAF2222325.1, 2010.
Santos, A. F., Velho, H. F. d. C., de Mattos, J. G. Z., Freitas, S. R., Gan, M. A., Passos, H. L., and Luz, E. F. P.: A parametric study for firefly algorithm by solving an inverse problem for precipitation field estimation, in: Proceedings 1st International Symposium on Uncertainty Quantification and Stochastic Modeling (Uncertainties 2012), http://urlib.net/dpi.inpe.br/plutao/2012/06.21.20.37, last access: 17 January 2013, 1–9, 2012.
Santos, A. F., de Campos Velho, H. F, Luz, E. F. P., Freitas, S. R., Grell, G., and Gan, M. A.: Firefly optimization to determine the precipitation field on South America, Inverse Probl. Sci. Eng., 21, 451–466, https://doi.org/10.1080/17415977.2012.712531, 2013.
Stensrud, D. J., Bao, J.-W., and Warner, T. T.: Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems, Mon. Weather Rev., 128, 2077–2107, 2000.
Thompson, P. D.: How to Improve Accuracy by Combining Independent Forecasts, Mon. Weather Rev., 105, 228–229, 1977.
Tribbia, J. J. and Baumhefner, D. P.: The Reliability of Improvements in Deterministic Short-Range Forecasts in the Presence of Initial State and Modeling Deficiencies, Mon. Weather Rev., 116, 2276–2288, 1988.
Tripoli, G. J. and Cotton, W. R.: The Colorado State University three-dimensional cloud/mesoscale model, Part I: General theoretical framework and sensitivity experiments, J. de Rech. Atmos., 16, 185–220, 1982.
Waliser, D. E. and Gautier, C.: A Satellite-derived Climatology of the ITCZ, J. Climate, 6, 2162–2174, 1993.
Walko, R. L., Band, L. E., Baron, J., Kittel, T. G. F., Lammers, R., Lee, T. J., Ojima, D., Pielke, R. A., Taylor, C., Tague, C., Tremback, C. J., and Vidale, P. L.: Coupled Atmosphere-Biophysics-Hydrology Models for Environmental Modeling, J. Appl. Meteorol., 39, 931–944, 2000.
Wilks, D. S.: Statistical methods in the atmospheric sciences – an introduction, vol. 2 of International Geophysics Series, 59, 1st Edn., Academic Press, San Diego, 1995.
Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets, J. Atmos. Sci., 30, 611–627, 1973.
Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, Luviner Press, Cambridge, 2008.
Yang, X. S.: Firefly algorithms for multimodal optimization, in: Proceedings of the Stochactic Algorithms: Foundations and Applications, vol. 5792, Sapporo, Japan, p. 178, 2009.
Yang, X. S.: Firefly Algorithm, Stochastic Test Functions and Design Optimisation, Int. J. Bio-Inspired Comput., 2, 78–84, 2010.
Zhou, J. and Lau, K. M.: Does a Monsoon Climate Exist over South America?, J. Climate, 11, 1020–1040, 1998.