
Adv. Geosci., 35, 123–136, 2013
www.adv-geosci.net/35/123/2013/
doi:10.5194/adgeo-35-123-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

DiscussionsUsing the Firefly optimization method to weight an ensemble of
rainfall forecasts from the Brazilian developments on the Regional
Atmospheric Modeling System (BRAMS)

A. F. dos Santos1, S. R. Freitas1, J. G. Z. de Mattos1, H. F. de Campos Velho2, M. A. Gan1, E. F. P. da Luz2, and
G. A. Grell3

1National Institute for Space Research, Center for Weather Forecasting and Climate Studies, Cachoeira Paulista, Brazil
2Laboratory for Computing and Applied Mathematics, National Institute for Space Research, São Jośe dos Campos, SP, Brazil
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Abstract. In this paper we consider an optimization problem
applying the metaheuristic Firefly algorithm (FY) to weight
an ensemble of rainfall forecasts from daily precipitation
simulations with the Brazilian developments on the Regional
Atmospheric Modeling System (BRAMS) over South Amer-
ica during January 2006. The method is addressed as a pa-
rameter estimation problem to weight the ensemble of pre-
cipitation forecasts carried out using different options of the
convective parameterization scheme. Ensemble simulations
were performed using different choices of closures, repre-
senting different formulations of dynamic control (the mod-
ulation of convection by the environment) in a deep convec-
tion scheme. The optimization problem is solved as an in-
verse problem of parameter estimation. The application and
validation of the methodology is carried out using daily pre-
cipitation fields, defined over South America and obtained
by merging remote sensing estimations with rain gauge ob-
servations. The quadratic difference between the model and
observed data was used as the objective function to deter-
mine the best combination of the ensemble members to re-
produce the observations. To reduce the model rainfall bi-
ases, the set of weights determined by the algorithm is used
to weight members of an ensemble of model simulations in
order to compute a new precipitation field that represents the
observed precipitation as closely as possible. The validation
of the methodology is carried out using classical statistical
scores. The algorithm has produced the best combination of
the weights, resulting in a new precipitation field closest to
the observations.

1 Introduction

Precipitation is one of the most important meteorological
variables of the climate system and directly affects human ac-
tivities. It is often the variable of greatest interest to the pub-
lic in a daily weather forecast. People want to know whether
or not precipitation will occur, and if a precipitation event
is predicted, an accurate quantitative precipitation forecast is
also of great value.

However, while the precipitation forecast provides very
important information for the population, it is the most dif-
ficult variable to predict, due to the fact that accuracy in the
timing and spatial distribution of the precipitation is crucial.
Moreover, quantitative precipitation forecasting, especially
in tropical and subtropical regions in summertime, is partic-
ularly challenging because of the convective nature of much
of the precipitation (Stensrud et al., 2000). Precipitation is
a final result of a set of physical processes, associated with
convection and cloud formation, that are not well understood
or well represented in the numerical models. Some of these
physical processes and parameters cannot be explicitly pre-
dicted in full detail on the model grid points (or wave num-
bers for spectral models), but their effects on the resolved
variables in the model are crucial for obtaining a correct
forecast.

The model physics, especially the convective processes,
contribute to uncertainties in weather and climate forecasts
due to the imperfect representation of the atmosphere in the
model (Tribbia and Baumhefner, 1988). The representations
of the physical and dynamical processes in the atmospheric
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124 A. F. dos Santos et al.: Using the Firefly optimization method

model are some of the sources of errors in numerical fore-
casts, and they are termed external errors (due to deficiencies;
Reynolds et al., 1994). These errors grow with the time inte-
gration of the atmospheric flow, thus making predictability
dependent on the atmospheric state (Lorenz, 1963).

In a regional model, the temporal and spatial scales are
reduced compared with global circulation models, and the
location and amounts of precipitation should be better rep-
resented in these models, though this is not always the case.
The models have difficulty in developing and organizing con-
vection at the correct location and time (Kain and Fritsch,
1992). The characteristics of precipitation forecasts are of-
ten directly affected by the assumptions used to develop the
model parameterization schemes for convection and other
processes (Stensrud et al., 2000). In this sense, the prob-
lem associated with convective parameterizations is to find
a relation between the intensity of the subgrid-scale convec-
tive activity and the large-scale variables. Although extensive
progress has been made since the first studies about convec-
tive parameterization, it is still an open task. Hence, cumulus
parameterization is one of the most difficult problems in both
weather and climate prediction.

A cumulus parameterization is an attempt to account for
the net effect of an ensemble of clouds on the scale of the
atmospheric model (Arakawa and Schubert, 1974). The goal
of cumulus parameterization is to determine changes in the
simulated large-scale environment due to the collective influ-
ence of multiple cumulus clouds (Jones and Randall, 2011).
A statistical approach is used to assume the solution, which
always introduces errors, providing an additional source of
uncertainty to the stochastic nature of the atmosphere.

Each parameterization method derives information about
the processes from the meteorological variables, consider-
ing a set of assumptions. Many schemes have been devel-
oped to represent the convection process. For some inter-
esting review articles on convective parameterizations the
reader is referred toYanai et al.(1973), Frank(1983), Grell
et al. (1991), Emanuel and Raymond(1993) and Arakawa
(2004). New ideas that have recently been implemented in-
clude build-in stochasticism (Grell and D́evényi, 2002; Lin
and Neelin, 2003), and the super parameterization approach
(Grabowski and Smolarkiewicz, 1999; Randall et al., 2003).
For our purposes we will not discuss the super parameteriza-
tion approach, which implements a different design.

The more commonly used parameterization approaches
differ significantly in their closure assumptions and descrip-
tion of the iteration between the environment and convec-
tion. Closure refers to the link between the assumptions in
the parameterization and the forecast variables, and it closes
the loop between the parameterization and forecast equa-
tions. The main concept of a parameterization scheme is the
choice of a closure, which consists of a set of statistical equa-
tions governing the system, whose size is too large (Arakawa,
2004). The differences among the parameterizations are a
consequence of the uncertainties in the understanding of the

physical and dynamical processes of convection, particularly
with respect to how to express the iteration between the large-
scale flow and convective clouds in parameterized terms (Bao
et al., 2011). The debate regarding which assumptions are
most appropriate under certain conditions and locations has
led to many discussions in past studies (Grell and D́evényi,
2002).

A way to make use of the uncertainties in numerical pre-
diction is to generate an ensemble of forecasts to span the
space of possible numerical solutions (Stensrud et al., 2000).
The goal of ensemble forecasting is to predict the forecast
probability of future weather events by the integration of an
ensemble of numerical predictions (Lorenz, 1965; Mullen
and Baumhefner, 1994). The ensemble members can be cre-
ated using different initial conditions, different physical pa-
rameters or by applying different model systems (Casanova
and Ahrens, 2009). The use of different physical param-
eterizations, which creates different model configurations,
has been used to generate a multi-model ensemble of ex-
periments (Houtekamer et al., 1996; Stensrud et al., 2000).
Stensrud et al.(2000) compared an ensemble using config-
urations with different physical processes and identical ini-
tial conditions with an ensemble of different model initial
conditions and identical model configurations. Specifically,
five different convective parameterization schemes were used
within the ensemble. They investigated 48 h forecasts during
summertime in North America. They found more skill when
using a model physics ensemble than when using an initial
condition ensemble when the large-scale forcing for upward
motion was weak. When the large-scale forcing for upward
motion was strong, improved forecast skill was found with
the initial condition ensemble. According to the authors, the
results suggested that varying the model physics is a poten-
tially powerful method to use in the creation of ensembles.

Bao et al.(2011) mentioned that the use of parameteriza-
tions separately in a single model framework provides a way
to take advantage of the uncertainties in numerical predic-
tion in terms of generation of an ensemble of different real-
izations in order to provide an ensemble prediction. In this
sense,Grell and D́evényi (2002), hereafter GD, developed a
convective parameterization scheme proper to create a phys-
ical ensemble inside the same model system and using the
same initial conditions if the user desired. GD developed a
deterministic scheme expanding the convective parameteri-
zation ofGrell (1993) to include several assumptions of clas-
sical closures and parameters commonly used in convective
parameterizations, which are often used in different realiza-
tions of the same model to create an ensemble of physics. The
GD parameterization scheme has been developed to provide
more freedom to users to choose one or more assumptions
and closures within the extensive existing options. The en-
semble members are chosen to allow a large spread in terms
of accumulated convective rainfall (Bao et al., 2011). The en-
semble of closures consists of disturbances around the classi-
cal closures ofGrell (1993); a simplified version ofArakawa
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and Schubert(1974) andKain and Fritsch(1993), low-level
omega (Brown, 1979; Frank and Cohen, 1987) and integrated
vertical advection of moisture (Krishnamurti et al., 1983),
which is aKuo (1974) type closure, hereafter GR, AS, KF,
LO and MC, respectively. GD used these members to deter-
mine the ensemble mean. Using the ensemble mean realiza-
tion, a numerical representation of precipitation and atmo-
spheric heating and moistening rates is obtained.

However, the ensemble mean is most likely not the best
choice, since some closure options can provide the best pre-
cipitation forecasts individually (Santos et al., 2013). The
GD ensemble could be improved by using the best combi-
nation of ensemble members. In a first approximation, the
results of the model with different closure options could be
combined with weighting the ensemble of precipitation fore-
casts of the model system. Many methodologies have been
used to combine different members of an ensemble to gener-
ate a bias-corrected ensemble. An ensemble method which
requires several model outputs and is applied in several
studies is called a Multimodel-Superensemble (Krishnamurti
et al., 1999; Krishnamurti et al., 2000, 2002), which is
weighted with an adequate set of weights calculated during a
period of training (Cane and Milelli, 2010). Cane and Milelli
(2010) used several model outputs to generate weights to ob-
tain a combined estimation of precipitation by least-square
minimization of the difference between the model and the
observed field using the Gauss–Jordan method applied to
Piemonte, Italy. The authors used the data collected in the
period March 2006–August 2008 from 342 weather stations,
along with different model outputs from European Centre for
Medium-Range Weather Forecasts (ECMWF) and different
versions of the model Consortium for Small-scale Modeling
(COSMO). The weights were calculated only once, during
a training period, and then applied during the forecast time
integration. The results showed significant improvement for
low thresholds of precipitation, with a reduction of the bias
and of the false alarm rates.

In order to identify the role of each component of the con-
vective parameterization ensemble in representing precipita-
tion over South America using the Brazilian developments
on the Regional Atmospheric Modeling SystemFreitas et al.
(2009) (BRAMS), an inverse problem methodology is ap-
plied to estimate the parameters associated with each mem-
ber of the ensemble of GD and then construct a new precipi-
tation field with bias removal. The inverse problem is formu-
lated as an optimization problem for retrieving the weights
of a set of precipitation simulations obtined from the GD
convective parameterization of the model BRAMS, and it is
solved using an methaheuristic optimization method called
the Firefly algorithm (FY) (Yang, 2008). The parameter es-
timation consists of minimizing an objective function us-
ing model parameter adjustment. The objective function is
a measure of the distance between the observed data and
BRAMS forecasts, the root mean square deviation of the
model forecasts and observations.

The remainder of this paper is organized as follows: Sect.2
gives a description of the FY, Sect.3 describes briefly the
model BRAMS, Sects.4, 5, and6 give a description of the
experiments, observed data used and mathematical formu-
lation of the proposed problem, respectively. Section7 de-
scribes the statistical verification of the results, while Sect.8
discusses the main results. Finally, Sect.9 provides some
conclusions concerning the solutions obtained by the FY ap-
plication and directions for future work.

2 The firefly algorithm (FY)

The FY was proposed byYang(2008), and is based on the bi-
oluminescence process which characterizes fireflies. Prelim-
inary studies with this methodology have produced satisfac-
tory results for this important application (Luz et al., 2009;
Santos et al., 2013). According to the literature, although the
FY has many similarities with other algorithms which are
based on swarm intelligence (such as Particle Swarm Opti-
mization – PSO, Artificial Bee Colony optimization – ABC,
and others), the FY has many advantages over other tech-
niques (Apostolopoulos and Vlachos, 2011). Lukasik and
Zak (2009) and Yang (2009, 2010) describe the simplicity
of the concept and implementation of the FY. The algorithm
is very efficient and can outperform other conventional algo-
rithms, such as genetic algorithms and Simulated Annealing
(Kirkpatrick et al., 1983), as demonstrated inLuz (2012). Its
main advantage is the fact that it uses mainly real random
numbers, and is based on the global communication among
the swarming particles, and as a result, it seems more ef-
fective in multiobjective optimization (Apostolopoulos and
Vlachos, 2011).

According toYang(2008), scientists do not yet have com-
plete understanding of the function of the flashing lights of
fireflies. However, there are at least two important functions
associated with the flashes: (a) attracting mating partners,
and (b) attracting potential prey.

In order to implement the algorithm based on the flashes
of fireflies, Yang (2008) used the following three idealized
rules: (i) the fireflies are unisex, so one firefly will be at-
tracted to other fireflies regardless of their sex; (ii) attractive-
ness is proportional to brightness, so, for any two flashes, the
less brighter one will move towards the brighter one. Further-
more, since the attractiveness is proportional to the bright-
ness, both decrease as the distance between the fireflies in-
creases. If there is no brighter firefly, it will move randomly;
(iii) the brightness of a firefly is affected or determined by
the landscape of the objective function.

There are two important pieces of information for deter-
mining the FY: the light intensity variation and the attrac-
tiveness formulation. For simplicity, the attractiveness is de-
termined by the brightness, which in turn is associated with
the objective function.
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For a simple case, the brightness (I ) in a particular location
is a function of its positionx as follows:

I (x) ∝ f (x), (1)

and the attractiveness (β) is relative to the firefly position
from which the more attractive firefly is observed. Thus,β

will depend on the distancerij between fireflyi attracted by
the brightness of fireflyj . Moreover, light intensity decreases
with increasing distance from its source and depends on the
propagation medium, so the attractiveness varies with the de-
gree of absorption.

The light intensity is assumed to be[I (r)] and it varies
according to the inverse square distancer,

I (r) =
Is

r2
, (2)

where Is is the light intensity at the source. For a given
medium with a fixed light absorption coefficientγ , the light
intensity varies withr as follows:

I = I0e−γ r , (3)

whereI0 is the original light intensity. In order to avoid the
singularity atr = 0 in the Eq. (2), the combined effect of both
the inverse square law and absorption can be approximated
as the following Gaussian form:

I (r) = I0e−γ r2
, (4)

which can be approximated as

I (r) =
I0

1 + γ r2
. (5)

The attractivenessβ is proportional to the light intensity
seen by adjacent fireflies as follows:

β = β0e−γ r2
, (6)

whereβ0 is the attractiveness atr = 0. This function can be
approximated by:

β(r) =
β0

1 + γ r2
. (7)

The distance between any two firefliesi andj at xi and
xj , respectively, is the Cartesian distance

rij = |xi − xj | =

√√√√ d∑
k=1

(
xi,k − xj,k

)2
, (8)

wherexi,k is thek-th component of the spatial coordinatexi

of i-th firefly.
The movement of a fireflyi attracted to another more at-

tractive (brighter) fireflyj in a given time step (t) is deter-
mined by:

xt+1
i = xt

i + β0e
−γ r2

ij

(
xt
i − xt

j

)
+ α

(
rand−

1

2

)
, (9)

whereα is the randomization parameter and “rand” is a ran-
dom number uniformly distributed in [0, 1].

The second term on the right hand side of Eq. (9) is due
to the attraction, while the third term is the randomization
term, associated with the random movement of fireflyi to-
ward fireflyj . Without this term, the fireflies could possibly
be attracted to a firefly that is not necessarily the brightest.
The solution would be restricted to a local minima, the best
solution in the local search space. With the randomization
term, the search over small deviations makes it possible to
escape from local minima, creating a higher chance of find-
ing the global minimum of the function.

The γ parameter (in m−1) is an absorption coefficient
which controls the decrease of the light intensity. It charac-
terizes the attractiveness variation and is crucially important
in determining the speed of convergence and how the FY be-
haves. In theory,γ ∈ [0, ∞), but in practice and in most ap-
plications,γ =O(1) and is determined by the characteristic
length0 of the system to be optimized. For most applica-
tions, it typically varies from 0.1 to 10.

3 The BRAMS model

The BRAMS model (Freitas et al., 2009) is a joint project
of several Brazilian institutions, including the Center for
Weather Forecasting and Climate Studies (CPTEC) of the
National Institute for Space Research (INPE), and was ini-
tially funded by FINEP (The Brazilian Funding Agency).
BRAMS is based on the Regional Atmospheric Model-
ing System (RAMS) (Walko et al., 2000), with several
new functionalities and parameterizations. BRAMS is a nu-
merical model developed to simulate atmospheric circula-
tions on many scales. It solves the time-split compressible
non-hydrostatic equations described byTripoli and Cotton
(1982). The set of physical parameterizations in BRAMS is
appropriate for simulating processes such as surface-air ex-
change, turbulence, convection, radiation and cloud micro-
physics (Freitas et al., 2009). The BRAMS model includes
an ensemble version of a deep and shallow cumulus scheme
based on the mass flux approach (the GD scheme).

The convective parameterization trigger function uses the
turbulent kinetic energy (TKE) of the RAMS Planetary
Boundary Layer (PBL) parameterization to modulate the
maximum distance that air parcels can rise from their source
level and, based on that, to determine if a grid column will
be able to sustain convection (Freitas et al., 2009). The trig-
ger function is modified using the parameter capmax, which
represents the maximum distance the air parcel can rise and
trigger the convective portion of a column if it can reach the
condensation level and, subsequently, free convection. The
capmax is modified with three values to be used in the en-
semble. The ensemble is built with 3 perturbations of the
trigger function (as described before), 3 perturbations of the
precipitation efficiency and a total of 16 perturbations of the
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mass fluxes at cloud base generated from 5 mass flux clo-
sure options, providing a total number of members equal to
3× 3× 16 = 144. Finally, by taking the arithmetic mean over
the trigger functions, precipitation efficiencies and closure
perturbations for each of the 5 mass flux closure options, the
dimension of the ensemble is reduced to 5 members, denoted
by GR, MC, LO, AS and KF. Then, an arithmetic mean of
these 5 members provides a unique solution denoted by en-
semble mean (EN). A detailed description of the 144 mem-
bers of the convective parameterization is given in GD.

4 Experimental design

The BRAMS model version 4.3 was used to simulate precip-
itation over South America. The model was run for a forecast
length of 24 h, once a day, from 1–31 January 2006, initial-
ized at 12:00 UTC, with a restart every 24 hours. The fol-
lowing configuration was used: the GD convective parame-
terization scheme, a model grid with 25 km horizontal res-
olution covering South America and 100 m vertical resolu-
tion in the first level. The vertical resolution varied telescop-
ically with higher resolution at the surface with a ratio of 1.1
up to a maximum vertical resolution of 950 m, with the top
of the model at approximately 19 km (a total of 40 ver-
tical levels). For initial and boundary conditions, we used
the CPTEC/INPE Atmospheric General Circulation Model
(AGCM) analysis with T126L28 resolution, where T126 is
the rhomboidal truncation at wave number 126, and L28 in-
dicates the number of model vertical levels.

One approach to generating an ensemble is to use differ-
ent model physical process parameterization schemes to con-
struct various versions of a model and produce an ensem-
ble of simulations that start from the same initial condition
(Stensrud et al., 2000). If all configurations of the model are
equally skillful, the ensemble mean should be a good ap-
proximation. As this assumption cannot be verified, since
each member has a different skill, the ensemble members
should be weighted unequally (Thompson, 1977). To create
this physics ensemble, the focus of this study is the choice of
different parameterization assumptions for deep convection,
yet there is uncertainty in other aspects of the model, includ-
ing the initial and boundary conditions, and parameteriza-
tions of turbulence, the planetary boundary layer (as shown
in Stensrud et al., 2000), microphysics and radiation, among
others. The possible role of these other parameterizations in
the ensemble system has not yet been investigated but will be
the focus of future studies.

In this paper, six different model simulations were per-
formed. From this, a set of distinct precipitation forecasts (P )
was created using five different closure options (i.e. GR, MC,
LO, AS and KF), hereafterPGR, PMC, PLO, PAS andPKF,
respectively, and a run was performed using the EN closure.
The EN precipitation field was used as the control. All sim-
ulations started from the same model initial condition. The

weighted ensemble (PM) based on the set ofP was created
using the FY.PM is defined as the linear combination ofPGR,
PMC, PLO, PAS andPKF. The methodology proposed to ob-
tain a well-weighted ensemble is detailed in Sect.6.

5 Observations

The following definition of a 24 h period was chosen for this
study: from 12:00 UTC on the previous day to 12:00 UTC on
the current day (precipitation accumulated in 24 h) for Jan-
uary 2006. During summertime (austral summer December-
February), more than 50 % of the total annual precipitation
over most of tropical and subtropical South America typi-
cally occurs, mainly in central and southern South America
(Rao and Hada, 1990; Figueroa and Nobre, 1990; Gan et al.,
2004), due to the climatological characteristics of the South
American monsoon system (Zhou and Lau, 1998; Gan and
Moscati, 2003; Gan et al., 2004). This period was chosen be-
cause the precipitation in January spans the range from weak
to strong forced convective forecast problems routinely han-
dled by operational forecasters (Stensrud et al., 2000).

The precipitation data is from the CPTEC/INPE, and is a
combined dataset using a technique called MERGE (Rozante
et al., 2010). The authors combine data from the Tropical
Rainfall Measuring Mission (TRMM) satellite precipitation
estimates (Huffman et al., 2007) with rain gauge observa-
tions over South America. Although TRMM is highly valu-
able for numerical model evaluation, the MERGE technique
is used to correct TRMM precipitation estimation problems,
because systematic errors have been identified, in particular
in the eastern portion of Northeast Brazil, where precipita-
tion is underestimated due to the formation of warm clouds
(Huffman et al., 2007). Warm clouds are clouds that purely
consist of liquid water. The temperature inside warm clouds
is warmer than 0◦C. The only requirement for a cloud to be
classified as a warm cloud is the absence of ice crystals (IAC,
2013).

6 Solving the inverse problem: weight estimation

To find the best combination ofP in order to obtainPM , we
applied the FY to solve an inverse problem of parameter es-
timation, computed as an optimization problem. The goal is
to identify the optimum weight values associated with each
member of the ensemble. The weight set is the unknown vec-
tor of parameters denoted byW T with 5 dimensions (d = 5).
We assume the objective functionJ (P ) as the inverse of the
light intensity of a firefly, since we need minimize the square
of the difference betweenPM and the observed precipitation
field or MERGE data (PO). The estimatorJ (P ) is a ran-
dom variable that minimizes the Euclidian norm square of
PM − PO, i.e.J (P ) minimizes

www.adv-geosci.net/35/123/2013/ Adv. Geosci., 35, 123–136, 2013
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Table 1.Parameter values used in the FY.

Parameter Value

α 0.1
β0 0.5
γ 10.0
n 50
G 100

J (P ) = |PM

(
W T

)
− PO|

2

=

[
P W

M − PO

]T [
P W

M − PO

]
=

wi∑
i=1

[
PM

(
W T

)
− PO

]2
, PM =

∑
i

wi Pi (10)

whereW T
≡ [wi , i = 1, . . . , d]

T , Pi (i = 1, 2, . . . ,Nw) and
Nw =d. Each member ofPM is associated with a weight in
the parameter vector, represented byW T = [wGR, wMC, wLO,
wAS, wKF]

T . Therefore,

PM = wGRPGR + wMC PMC + wLO PLO + wASPAS + wKF PKF. (11)

The subscripts GR, MC, LO, AS and KF denote the different
choices of closures (see Sect.3).

Each firefly represents a candidate solution (theW T vec-
tor), and the brightest firefly identifies the best weight set for
weightingPM . The best solution (the brightest and most at-
tractive firefly) is the minimum value ofJ (P ).

The parameters used in the FY are: the number of gener-
ations (G), i.e. the number of iterations; the number of fire-
flies (n) for eachG, β0, α andγ . The total number of func-
tion evaluations was 5000 (n × G). The parameters used are
summarized in Table1. The sensitivity of the algorithm with
respect to the chosen parameters was previously tested, al-
lowing the choice of the best parameters to be used together
to solve the proposed inverse problem. More details can be
found inSantos et al.(2012). However, the FY is very sen-
sitive to parameter changes. There is no guarantee that the
parameters used in this work will be the best choice for an-
other condition. The parameters used are valid only for the
BRAMS forecasts with specifications described in Sects.3
and4.

Figure1 shows a flowchart of the proposed inverse prob-
lem solution using FY. The first step is to set the FY parame-
ters. Here, we associate each firefly with the vectorW T , with
each component between the interval [0, 1]. The BRAMS
precipitation simulations (PGR, PMC, PLO, PAS and PKF)
are supplied as input to FY and the output is the best value
for W T .

The initial candidate solution for the iterative optimization
process is randomly generated. The fireflies are sorted based
on theJ (P ) evaluation, where the brightest firefly is classi-
fied on the first position, and so on. This process is the eval-
uation of the first firefly population (first generation), and it
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Fig. 1. The firefly algorithm implemented.

Fig. 2. Areas used to calculate the statistical scores. The numbers
represent corresponding areas indicated in the text.

in Southeastern Brazil, there is no precipitation in the south-
ern part of Brazil (Herdies et al., 2002). It is very important
to consider the different precipitation regimes in central and
southern South America. The corresponding geographical
locations are indicated below and the areas are indicated in
Fig. 2:

– South America: 82.6oW/32.6oW , 49.9oS/13.6oN ;

– Southern South America (area 2): 82.6oW/32.6oW ,
49.9oS/24oS;

– Central South America (area 3): 82.6oW/32.6oW ,
24oS/13.5oS;

– Northeastern Brazil (area 4): 45oW/32.6oW ,
13.5oS/5oN ;

– Northwestern South America (area 5): 82.6oW/45oW ,
13.5oS/5oN ;

– Northern South America and tropical Atlantic Ocean
(area 6): 82.6oW/32.6oW , 5oN/13.6oN

8 Results

Figure 3 shows the January 2006 average 24-h accumulated
precipitation as simulated by the BRAMS model using 5 dif-
ferent closures as well as the EN. A small spread is observed
among all ensemble members (Fig. 3a-e), except for the AS
member (Fig. 3b), which deviates more substantially. In the
EN (Fig. 3f), the spatial pattern of the precipitation fore-
cast is very similar to that of the individual members, as ex-
pected. Each ensemble member and the EN simulated a huge
area of precipitation over the preferential position of the In-
tertropical Convergence Zone (ITCZ) during January, except

Fig. 1.The firefly algorithm implemented.

is repeated for next generations. If the iteration numberG is
less than the maximum number of generations (GMax), the
process continues. This is the termination criterion that needs
to be satisfied to end the iterative process. The generation of
a new solution, i.e. the movement of a firefly, is given by
Eq. (9). For each generation, the swarm ofn = 50 fireflies is
ranked based on their light intensity, and the firefly with the
maximum light intensity (i.e. the solution with the minimum
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J (P )) is chosen as the potential optimal solution. In the last
iteration, the firefly with the brighter light intensity among
the swarm of fireflies is considered the optimal solution of
the inverse problem.

Finally, with the computed optimized solution, the vector
W T for each grid point of the domain is saved, and the final
precipitation field is retrieved. The retrieved precipitation is
PM given by Eq. (11), i.e. the linear combination between
each precipitation simulation and the corresponding weight.

7 Verification forecasts

In this paper we used some classical statistical scores to com-
pare results from the individual ensemble members, the GD
EN and the ensemble weighted using the FY.

To evaluate model skill in simulating the actual rainfall,
the bias score and the Equitable Threat Score (ETS) were
computed at each grid point of the domain. The ETS mea-
sures the skill in predicting the precipitation amounts over
a given threshold with respect to a random forecast (Rogers
et al., 1995). The bias score is the ratio of the forecast precip-
itation to the observed precipitation for amounts exceeding a
given precipitation category (Wilks, 1995). Bias greater than
one indicates that the event was forecast more often than ob-
served, or overpredicted.

The bias score and the ETS were calculated for different
precipitation thresholds (0.254, 2.54, 6.53, 12.7, 19.05, 25.4,
38.1, 50.8 mm). These thresholds were chosen because they
are commonly used and are standard thresholds used opera-
tionally at CPTEC/INPE. A brief description of these scores
is given in AppendixA. Both indices were computed over
the entire domain of South America and the adjacent oceans
(both Pacific and Atlantic Oceans) and the domain was di-
vided into five small areas. In these areas, there are different
precipitation regimes, and the partition areas follow criteria
used byChou et al.(2002) with modifications to separate
southern South America from central South America. These
areas show completely different precipitation regimes dur-
ing the entire year. Particularly during the summer months,
it is known that when the South Atlantic Convergence Zone
(SACZ) is causing precipitation in Southeastern Brazil, there
is no precipitation in the southern part of Brazil (Herdies
et al., 2002). It is very important to consider the different
precipitation regimes in central and southern South America.
The corresponding geographical locations are indicated be-
low and the areas are indicated in Fig.2:

– South America: 82.6◦ W/32.6◦ W, 49.9◦ S/13.6◦ N;

– Southern South America (area 2): 82.6◦ W/32.6◦ W,
49.9◦ S/24◦ S;

– Central South America (area 3): 82.6◦ W/32.6◦ W,
24◦ S/13.5◦ S;

Fig. 2. Areas used to calculate the statistical scores. The numbers
represent corresponding areas indicated in the text.

– Northeastern Brazil (area 4): 45◦ W/32.6◦ W, 13.5◦ S/
5◦ N;

– Northwestern South America (area 5): 82.6◦ W/45◦ W,
13.5◦ S/5◦ N;

– Northern South America and tropical Atlantic Ocean
(area 6): 82.6◦ W/32.6◦ W, 5◦ N/13.6◦ N.

8 Results

Figure3 shows the January 2006 average 24-h accumulated
precipitation as simulated by the BRAMS model using 5 dif-
ferent closures as well as the EN. A small spread is observed
among all ensemble members (Fig.3a–e), except for the AS
member (Fig.3b), which deviates more substantially. In the
EN (Fig. 3f), the spatial pattern of the precipitation forecast
is very similar to that of the individual members, as expected.
Each ensemble member and the EN simulated a huge area of
precipitation over the preferential position of the Intertrop-
ical Convergence Zone (ITCZ) during January, except for
AS, which simulated intense rainfall over northern Brazil.
The ITCZ in January is typically observed between the equa-
tor and 5◦ N (Waliser and Gautier, 1993; Nobre and Srukla,
1996).
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Fig. 3. 24-h accumulated precipitation for January 2006 (in mm)
using the closures:(a) GR, (b) AS, (c) MC, (d) LO, (e) KF and
(f) EN.

A comparison among the spatial distributions of the ob-
served rainfall, that simulated by the GD ensemble mean
(EN) and the ensemble with mean weighted with FY is
shown in Fig.4. The observed rainfall (Fig.4a) shows a near
uniform distribution of precipitation covering most of South
America and adjacent oceans. More precipitation is observed
between the equator and 10◦ N, associated with the ITCZ.

During January 2006, the ITCZ had been located around
its climatological position near the African coast and slightly
to the north near the Brazilian coast. According to the es-
timation in pentads of the mean position of the ITCZ in
January 2006 from the location of the minimum values of
Outgoing Longwave Radiation (OLR) along the Equatorial
Atlantic Ocean (Climańalise, 2006), in most pentads it was
north of the climatological position near the Brazilian coast.
However, during the first half of the month, the iteration be-
tween the ITCZ and the upper tropospheric cyclonic vortices
favored the occurrence of rain on the north coast of Brazil.

Due to the intense activity of the ITCZ, there is more pre-
cipitation over the northern part of South America, with an
accumulated amount of 6 mm to 10 mm (Fig.4a). More in-
tense accumulated precipitation is observed over the Atlantic
Ocean (around 20 to 30 mm). Over the central part of South
America, the elongated precipitation band from northwest-
ern to southeastern South America is associated with the
SACZ (Casarin and Kousky, 1986; Kodama, 1992), which
is typically observed during the austral summer. Convec-
tive activities associated with typical thermodynamic sum-
mer cloud systems and mountain effects are found in western
and northeastern Bolivia and southeastern Peru, producing
rainfall amounts of around 20 to 30 mm. Intense precipita-
tion is also found over northern and northeastern Argentina,
as well as over Uruguay.

Fig. 4. 24-h accumulated precipitation for January 2006 (in mm):
(a) observation (MERGE),(b) using the ensemble simple mean
(EN) and(c) field weighted by FY. The blue (red) arrows and cir-
cles point out areas where the FY performance is better (worse) in
comparison with EN.

The precipitation simulation by GD using the EN is shown
in Fig. 4b. Comparing the EN field with the observed precip-
itation (Fig. 4a), one can see an overestimation of precip-
itation on the northern coast of South America and in the
central-eastern Amazon basin, southeastern Peru and central
Bolivia. Overestimation is also observed over the eastern part
of Southeast Brazil, where the largest urban centers of Brazil
and concentrated populations are located. Also, overestima-
tion of light precipitation is evident in a large area of the
ITCZ. Underestimation is observed over the western Ama-
zon basin, southeastern Argentina and Uruguay.

The weighted precipitation generated by FY is shown in
Fig. 4c. The results are clearly better when compared to the
EN. Blue (red) arrows in Fig.4b point out areas where the
FY performance is better (worse) in comparison with the EN.
Over the northern coast of South America and adjacent At-
lantic Ocean, over the central Amazon basin and southeastern
Peru and northern Bolivia, the FY reduced the overestimation
observed in the GD EN field, generating a simulated precipi-
tation field very close to the observation. The method showed
good performance in increasing precipitation over the south-
eastern and northern portions of Argentina, where the GD
EN underestimated precipitation. However, in these areas,
FY overestimated precipitation, as shown by the red circles
in Fig.4c. Overestimation of light precipitation was observed
(not shown) over central-southeastern Brazil, where precip-
itation amounts of about 2 to 6 mm were observed. FY did
not reduce the total overestimation over the eastern part of
Southeast Brazil, as highlighted by the red circle in Fig.4c,
but compared with the GD EN, highlighted by the red arrow
in Fig. 4b, a reduction of the overestimation was observed.

For the bias score computed over all domains (Fig.5), the
magnitudes of the scores are comparable with the bias scores
of other regional models shown in other studies (Chou and
da Silva, 1999). Figure 5a shows the bias score mean av-
eraged over the entire domain. LO and KF members pro-
duce bias scores higher (lower) than 1 for the thresholds
lower (higher) than 25 mm, with a maximum (minimum)
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a) b)

c) d)

e) f)

Fig. 5. Bias score vs precipitation thresholds (0.254 mm, 2.54 mm,
6.53 mm, 12.7 mm, 19.05 mm, 25.4 mm, 38.1 mm, 50.8 mm) for a)
South America, b) area 2, c) area 3, d) area 4, e) area 5, f) area 6.

terns (Anthes et al., 1989), mainly when these patterns are
intense.

According to Mason (1989) and Hamill (1999), the ETS
can be affected by model bias. Comparing the ETS values
from competing forecasts may be misleading if their biases
are dissimilar Mason (1989). As shown in Fig. 5, similar bias
scores are observed at all thresholds, except for member AS.
Mason (1989) and Mesinger (1996) have noticed that typi-
cally a model with high bias should normally exhibit higher
ETS than if the model had less bias. As ETS is affected by
the bias of the model, a response of the ETS behavior to the
model bias would be expected, in the sense that at lower
thresholds, ETS would be higher, and at higher thresholds,
ETS would be lower. The results using the ETS agree with
previous studies as discussed before, showing higher ETS
when higher bias is observed. Even if the ETS has been
inflated by higher bias, the ETS showed better skill for the
precipitation weighted by FY over all domains (Figs. 6a-6f).
The highest gain was in the range of small to medium thresh-
olds, but the increase of the skill for higher thresholds was
clear.

Unfortunately, in the scope of this paper, it was not pos-
sible to verify if the increase of the skill is significant. The
FY incorporates more characteristics of the observed rainfall
into the new rainfall estimation; therefore the performance of
the precipitation simulation was substantially improved.

a) b)

c) d)

e) f)

Fig. 6. ETS score vs precipitation thresholds (legends are the same
as Figure 5).

9 Conclusions

The BRAMS regional atmospheric model incorporates the
GD convection scheme, which has several assumptions and
closures to simulate sub-grid scale convective precipitation.
As a result, the precipitation forecasts can be combined
in multiple ways, generating a numerical representation of
precipitation and atmospheric heating and moistening rates.
This scheme also allows the simple mean ensemble average
to be used as the effective simulated rainfall amount and rate.
The GD approach also allows optimization methods to be
applied in order to determine the optimum combination of
the ensemble members which, frequently, is not the simple
mean.

In this work, the Firefly optimization method was applied
to capture the best combination of the ensemble members
in order to minimize the error of the rainfall predicted by
the GD scheme. The use of the Firefly algorithm led to a
weighted ensemble that captures more of the real precipita-
tion pattern than the GD ensemble simple mean and has more
skill than individual ensemble members in most of the pre-
cipitation threshold ranges.

Results from one-month simulations using five different
closures to generate a new 5-member ensemble of precipita-
tion simulations suggest that the parameter estimation using
the Firefly algorithm as an optimization method is a reason-
able and potentially powerful methodology to use in produc-
ing an ensemble with improved ETS and bias score, espe-
cially since there are so many uncertainties in the parameter-
izations used in any numerical model. This methodology is
innovative in using the observations as a priori information

Fig. 5.Bias score vs precipitation thresholds (0.254, 2.54, 6.53, 12.7, 19.05, 25.4, 38.1, 50.8 mm) for(a) South America,(b) area 2,(c) area 3,
(d) area 4,(e)area 5,(f) area 6.

value of about 2 (0.25) for threshold 6.53 mm (50.8 mm). The
MC member produces a similar performance, but bias higher
(lower) than 1 is observed at thresholds lower (higher) than
19.05 mm, with mininum value of about 0.15. The EN pro-
duces a maximum bias of 1.75 for thresholds between 2.54
and 6.53 and bias lower than 1 for thresholds higher than
17 mm. The EN solution reduces bias observed in individ-
ual members for thresholds between 2.54 mm up to about
22 mm. The member AS exhibits an opposite behavior, with
bias lower (higher) than 1 for thresholds lower (higher) than
about 40 mm. All members overestimate lower precipitation
amounts and underestimate higher precipitation amounts,
while AS produces heavy precipitation in localized areas and
underestimates light precipitation amounts in most parts of
the South America domain.

When the bias score is computed to verify the impact of
the weighted precipitation using the FY over the entire do-
main, a substantial increase in the skill of the model com-
pared with the skill based on individual members of the

ensemble is observed (Fig.5a). Of particular interest is a
comparison with the EN simulation. FY produces bias for
thresholds between 0.254 and 38.1 mm between 1 and 0.75.
For the highest threshold, the FY bias decreases to about 0.6.
The FY bias exhibits a smooth decrease from the best value
of bias at lower thresholds to small bias at higher thresholds.
Although the FY underestimates precipitation at the highest
thresholds, the other members underestimate it as well. How-
ever, with FY the underestimation is smaller than that of the
other members. The one exception to this is the AS member,
which overestimates precipitation at the 50.8 mm threshold
and underestimates it at all lower thresholds.

Analyzing as well the bias score applied to the five smaller
areas over South America, the effect of the EN is to de-
crease the bias as observed over the entire domain, except
for area 6. In addition, the increase of the skill of FY in all
domains compared to the skill of the EN closure is observed
(Fig. 5b–f). The bias behavior in areas 3, 4 and 5 is very
similar (Fig. 5c–e), however, different behaviors are found
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in areas 2 and 6 (Fig.5b and f). In the former, all members
show similar performance for smaller thresholds, with bias
higher (lower) than 1 for thresholds lower (higher) than about
25 mm. The bias in domain 2 was higher (lower) than 1 for
thresholds lower (higher) than 15 mm. However, the domain
6 bias exhibits values higher than 2 for thresholds between
0.254 and 19 mm for most of the members, including the
EN. Bias between 1 and 2 is observed for thresholds between
25 and 38 mm for most members, and bias lower than 1 for
higher thresholds, except for member LO, which exhibits a
maximum bias of 1.3.

The effect of FY weighting on lower thresholds is to de-
crease higher bias, and this is observed in all domains. For
higher thresholds, FY improves the values of bias, increas-
ing lower bias, or in other words, decreasing the underesti-
mation. In comparison with the other ensemble members, the
increase in skill is most evident in area 6 (Fig.5f), where in
general we observe the ITCZ during January and the precip-
itation pattern is dominated by convective circulations. The
EN and all members (except AS) overestimate precipitation
lower than 25 mm. Larger bias is observed in area 6 indi-
cating a deficiency in the forecast precipitation from deep
convection mainly over the ITCZ. On the other hand, in this
region there are no conventional rain gauge observations, and
the precipitation data is provided by satellite estimation. As
mentioned in Sect.5, there are deficiencies in satellite prod-
ucts to estimate precipitation from warm clouds. Thus, the
observed precipitation could be underestimated and the bias
could be inflated. Area 4 is, like area 6, a preferred loca-
tion for warm clouds, but has the highest surface observa-
tion density. As the MERGE technique combines rain gauge
with satellite estimation, the representation of precipitation
in tropical regions is best in area 4.

The precipitation weighted by FY showed comparable
skill compared with all individual members and the EN clo-
sure in area 2 (Fig.5b – South Brazil), where the precip-
itation pattern is influenced mainly by synoptic scale sys-
tems. The ensemble weighted by FY increases the skill of
the model for the full range of the thresholds.

During the warm season, precipitation is dominated by
small-scale convective processes in tropical and subtropical
regions, that occur with greater frequency at night (Maddox
et al., 1979). The models tend to underestimate the higher
thresholds and tend to overestimate events of lighter precipi-
tation. Thus, many of the model schemes have a strong high
bias. According toAnthes et al.(1989), as the area predicted
diminishes in size when increasing precipitation thresholds,
it becomes more difficult to forecast. The high values of bias
produced by member AS are associated with overestimation
of high precipitation amounts, while low values of bias at
lower thresholds can be explained by the underestimation of
light precipitation, both situations observed in Fig.3b.

The large variations in most of the model schemes reflect
the complexity of the precipitation process and the difficulty

of predicting accurately quantitative precipitation patterns
(Anthes et al., 1989), mainly when these patterns are intense.

According toMason(1989) andHamill (1999), the ETS
can be affected by model bias. Comparing the ETS values
from competing forecasts may be misleading if their biases
are dissimilar (Mason, 1989). As shown in Fig.5, similar bias
scores are observed at all thresholds, except for member AS.
Mason(1989) andMesinger(1996) have noticed that typi-
cally a model with high bias should normally exhibit higher
ETS than if the model had less bias. As ETS is affected by
the bias of the model, a response of the ETS behavior to the
model bias would be expected, in the sense that at lower
thresholds, ETS would be higher, and at higher thresholds,
ETS would be lower. The results using the ETS agree with
previous studies as discussed before, showing higher ETS
when higher bias is observed. Even if the ETS has been in-
flated by higher bias, the ETS showed better skill for the pre-
cipitation weighted by FY over all domains (Fig.6a–f). The
highest gain was in the range of small to medium thresholds,
but the increase of the skill for higher thresholds was clear.

Unfortunately, in the scope of this paper, it was not pos-
sible to verify if the increase of the skill is significant. The
FY incorporates more characteristics of the observed rainfall
into the new rainfall estimation; therefore the performance of
the precipitation simulation was substantially improved.

9 Conclusions

The BRAMS regional atmospheric model incorporates the
GD convection scheme, which has several assumptions and
closures to simulate sub-grid scale convective precipitation.
As a result, the precipitation forecasts can be combined
in multiple ways, generating a numerical representation of
precipitation and atmospheric heating and moistening rates.
This scheme also allows the simple mean ensemble average
to be used as the effective simulated rainfall amount and rate.
The GD approach also allows optimization methods to be
applied in order to determine the optimum combination of
the ensemble members which, frequently, is not the simple
mean.

In this work, the Firefly optimization method was applied
to capture the best combination of the ensemble members
in order to minimize the error of the rainfall predicted by
the GD scheme. The use of the Firefly algorithm led to a
weighted ensemble that captures more of the real precipita-
tion pattern than the GD ensemble simple mean and has more
skill than individual ensemble members in most of the pre-
cipitation threshold ranges.

Results from one-month simulations using five different
closures to generate a new 5-member ensemble of precipi-
tation simulations suggest that the parameter estimation us-
ing the Firefly algorithm as an optimization method is a
reasonable and potentially powerful methodology to use in
producing an ensemble with improved ETS and bias score,
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a) b)

c) d)

e) f)

Fig. 5. Bias score vs precipitation thresholds (0.254 mm, 2.54 mm,
6.53 mm, 12.7 mm, 19.05 mm, 25.4 mm, 38.1 mm, 50.8 mm) for a)
South America, b) area 2, c) area 3, d) area 4, e) area 5, f) area 6.

terns (Anthes et al., 1989), mainly when these patterns are
intense.

According to Mason (1989) and Hamill (1999), the ETS
can be affected by model bias. Comparing the ETS values
from competing forecasts may be misleading if their biases
are dissimilar Mason (1989). As shown in Fig. 5, similar bias
scores are observed at all thresholds, except for member AS.
Mason (1989) and Mesinger (1996) have noticed that typi-
cally a model with high bias should normally exhibit higher
ETS than if the model had less bias. As ETS is affected by
the bias of the model, a response of the ETS behavior to the
model bias would be expected, in the sense that at lower
thresholds, ETS would be higher, and at higher thresholds,
ETS would be lower. The results using the ETS agree with
previous studies as discussed before, showing higher ETS
when higher bias is observed. Even if the ETS has been
inflated by higher bias, the ETS showed better skill for the
precipitation weighted by FY over all domains (Figs. 6a-6f).
The highest gain was in the range of small to medium thresh-
olds, but the increase of the skill for higher thresholds was
clear.

Unfortunately, in the scope of this paper, it was not pos-
sible to verify if the increase of the skill is significant. The
FY incorporates more characteristics of the observed rainfall
into the new rainfall estimation; therefore the performance of
the precipitation simulation was substantially improved.

a) b)

c) d)

e) f)

Fig. 6. ETS score vs precipitation thresholds (legends are the same
as Figure 5).

9 Conclusions

The BRAMS regional atmospheric model incorporates the
GD convection scheme, which has several assumptions and
closures to simulate sub-grid scale convective precipitation.
As a result, the precipitation forecasts can be combined
in multiple ways, generating a numerical representation of
precipitation and atmospheric heating and moistening rates.
This scheme also allows the simple mean ensemble average
to be used as the effective simulated rainfall amount and rate.
The GD approach also allows optimization methods to be
applied in order to determine the optimum combination of
the ensemble members which, frequently, is not the simple
mean.

In this work, the Firefly optimization method was applied
to capture the best combination of the ensemble members
in order to minimize the error of the rainfall predicted by
the GD scheme. The use of the Firefly algorithm led to a
weighted ensemble that captures more of the real precipita-
tion pattern than the GD ensemble simple mean and has more
skill than individual ensemble members in most of the pre-
cipitation threshold ranges.

Results from one-month simulations using five different
closures to generate a new 5-member ensemble of precipita-
tion simulations suggest that the parameter estimation using
the Firefly algorithm as an optimization method is a reason-
able and potentially powerful methodology to use in produc-
ing an ensemble with improved ETS and bias score, espe-
cially since there are so many uncertainties in the parameter-
izations used in any numerical model. This methodology is
innovative in using the observations as a priori information

Fig. 6.ETS score vs. precipitation thresholds (legends are the same as Fig.5).

especially since there are so many uncertainties in the param-
eterizations used in any numerical model. This methodology
is innovative in using the observations as a priori information
to generate a set of weights to be applied to the members of
an ensemble of physics parameterizations, and the results in-
dicate that the Firefly algorithm is a robust method that can
be used for this kind of problem.

In this paper, no independent data set was used to ver-
ify the implementation of the Firefly algorithm. The method
proposed has demonstrated beneficial hindcast improvement,
which is a very important result. On the other hand, we are
now working on the application of the use of a priori data to
generate a set of weights that can be applied to the members
of the ensemble physics of the model BRAMS to improve the
forecasting of future events. Thus far, the results are encour-
aging and we are planning to apply the method to weighting
the closure members of the GD convective parameterization
of the model BRAMS in order to generate a more realistic
precipitation response. With such improvement, we expect
not only to improve the precipitation forecasts, but also to

improve the forecasts of other variables, such as temperature,
surface pressure and chemical constituents, because convec-
tive parameterization plays an important role in the vertical
distribution of heat and moisture as well as in the mechanism
of vertical transport of pollutants.

Appendix A

Verification measures

In this Appendix, we briefly describe the statistical scores
used to verify the results obtained in this paper, according to
Wilks (1995).

A1 Bias score

The bias score is the ratio of the number of “yes” forecasts
(F ) to the number of “yes” observations (O) given a specific
criterion, such that
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Bias =
F

O
. (A1)

A forecast with no bias has a value of 1. In this paper, we
computed theF andO values for each grid point using the
EN, each individual ensemble member, the weighted precip-
itation using FY, and the observations. The bias was calcu-
lated for the precipitation thresholds described in Sect.7.

A2 Equitable threat score

The ETS measures the skill in predicting the area of precip-
itation amounts over a given threshold with respect to a ran-
dom forecast (Rogers et al., 1995) and is calculated accord-
ing to the precipitation thresholds described in Sect.7. The
ETS is defined as:

ETS =
H − CH

F + O − H − CH
, (A2)

whereH is the number of correctly simulated points andCH

is the expected number of correct points from a random fore-
cast,CH = (F/V ) · O, whereV is a sample size of verifica-
tion points. A perfect forecast occurs when ETS = 1, and any
forecast with ETS6 0 has no skill. Forecasts with ETS> 0
have skill relative to a random forecast.
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