Articles | Volume 7
https://doi.org/10.5194/adgeo-7-97-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/adgeo-7-97-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Artificial neural-network technique for precipitation nowcasting from satellite imagery
G. Rivolta
Centro di Eccellenza CETEMPS, Università dell’Aquila, L’Aquila, Italy
F. S. Marzano
Dipartimento di Ingegneria Elettronica, Universit`a di Roma “La Sapienza", Rome, Italy
Centro di Eccellenza CETEMPS, Università dell’Aquila, L’Aquila, Italy
E. Coppola
Centro di Eccellenza CETEMPS, Università dell’Aquila, L’Aquila, Italy
M. Verdecchia
Centro di Eccellenza CETEMPS, Università dell’Aquila, L’Aquila, Italy
Viewed
Total article views: 2,099 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
970 | 1,037 | 92 | 2,099 | 100 | 92 |
- HTML: 970
- PDF: 1,037
- XML: 92
- Total: 2,099
- BibTeX: 100
- EndNote: 92
Cited
32 citations as recorded by crossref.
- Determination of CERES TOA Fluxes Using Machine Learning Algorithms. Part I: Classification and Retrieval of CERES Cloudy and Clear Scenes B. Thampi et al. 10.1175/JTECH-D-16-0183.1
- A quantitative precipitation forecast model using convective-cloud tracking in satellite thermal infrared images and adaptive regression: a case study along East Coast of India B. Goswami et al. 10.1007/s40808-020-00968-7
- Application of Artificial Neural Networks for Accuracy Enhancements of Real-Time Flood Forecasting in the Imjin Basin A. Jabbari & D. Bae 10.3390/w10111626
- Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review W. Moskolaï et al. 10.3390/rs13234822
- A random forest algorithm for nowcasting of intense precipitation events S. Das et al. 10.1016/j.asr.2017.03.026
- NowCasting-Nets: Representation Learning to Mitigate Latency Gap of Satellite Precipitation Products Using Convolutional and Recurrent Neural Networks M. Ehsani et al. 10.1109/TGRS.2022.3158888
- Precipitation Estimation Using FY-4B/AGRI Satellite Data Based on Random Forest Y. Huang et al. 10.3390/rs16071267
- MCSIP Net: Multichannel Satellite Image Prediction via Deep Neural Network J. Lee et al. 10.1109/TGRS.2019.2955538
- Comparative study of cloud evolution for rainfall nowcasting using AI-based deep learning algorithms X. Jiang et al. 10.1016/j.jhydrol.2024.131593
- Rainfall Nowcasting From Multisatellite Passive-Sensor Images Using a Recurrent Neural Network F. Marzano et al. 10.1109/TGRS.2007.903685
- A sequence-to-sequence based multi-scale deep learning model for satellite cloud image prediction J. Lian & R. Chen 10.1007/s12145-023-00945-5
- Learning ensembles of deep neural networks for extreme rainfall event detection G. Folino et al. 10.1007/s00521-023-08238-0
- Radiometric Estimation of Tropospheric Attenuation: A Mixed Physically Based/Machine Learning Approach T. Tunçkol et al. 10.1109/TGRS.2024.3393506
- Flood forecast in complex orography coupling distributed hydro-meteorological models and in-situ and remote sensing data M. Verdecchia et al. 10.1007/s00703-007-0278-z
- Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors P. Benevides et al. 10.3390/rs11080966
- Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals H. Meyer et al. 10.1016/j.atmosres.2015.09.021
- Artificial Intelligence and Its Application in Numerical Weather Prediction S. Soldatenko 10.3103/S1068373924040010
- Extrapolation of Sequence of Geostationary Satellite Images for Weather Nowcasting B. Shukla et al. 10.1109/LGRS.2010.2060311
- Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data A. Kumar et al. 10.1371/journal.pone.0230114
- Machine Learning Methods for Weather Forecasting: A Survey H. Zhang et al. 10.3390/atmos16010082
- Multiple data fusion for rainfall estimation using a NARX-based recurrent neural network – the development of the REIINN model M. Ang et al. 10.1088/1755-1315/17/1/012019
- Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences L. Son & P. Thong 10.1007/s10489-016-0811-1
- Cyclone track forecasting based on satellite images using artificial neural networks R. Kovordányi & C. Roy 10.1016/j.isprsjprs.2009.03.002
- Implementation of intuitionistic fuzzy logic to assess the predictability of severe thunderstorms S. Chaudhuri 10.1007/s13143-011-0032-9
- Precipitation Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Random Forests M. Kühnlein et al. 10.1175/JAMC-D-14-0082.1
- Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — A random forests-based approach applied to MSG SEVIRI M. Kühnlein et al. 10.1016/j.rse.2013.10.026
- Revealing the potential of spectral and textural predictor variables in a neural network-based rainfall retrieval technique H. Meyer et al. 10.1080/2150704X.2017.1312026
- The Added Value of Surface Data to Radar-Derived Rainfall-Rate Estimation Using an Artificial Neural Network B. Root et al. 10.1175/2010JTECHA1361.1
- Estimating High Spatio-Temporal Resolution Rainfall from MSG1 and GPM IMERG Based on Machine Learning: Case Study of Iran N. Turini et al. 10.3390/rs11192307
- Prediction of Satellite Image Sequence for Weather Nowcasting Using Cluster-Based Spatiotemporal Regression B. Shukla et al. 10.1109/TGRS.2013.2280094
- Monthly adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the VuGia^|^ndash;ThuBon River Basin in Central Vietnam using an artificial neural network T. Ngo-Duc et al. 10.3178/hrl.7.85
- Assessing Nowcast Models in the Central Mexico Region Using Radar and GOES-16 Satellite Data D. Islas-Flores & A. Magaldi 10.3390/atmos15020152
Latest update: 21 Jan 2025