The ArtemIS project: Assessment for medium-depth geothermal energy utilization in Germany
Leandra M. Weydt
CORRESPONDING AUTHOR
Department of Geothermal Science and Technology, Technical University of Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Thorsten Agemar
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany
Michael Erb
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany
Niklas Mantei
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany
Nicole Dobrzinski
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany
Josef Weber
Department of Structural Geology and Geothermics, Georg August University Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
Sebastian Sperlich
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany
Jeroen van der Vaart
Ministry of Economic Affairs and Climate Policy, Transition Deep Subsurface, Bezuidenhoutseweg 73, 2594 AC Den Haag, the Netherlands
Kristian Bär
Vulcan Energy Subsurface Solutions GmbH, An der Raumfabrik 33c, 76227 Karlsruhe, Germany
Inga Moeck
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany
Department of Structural Geology and Geothermics, Georg August University Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
Ingo Sass
Department of Geothermal Science and Technology, Technical University of Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
Section 4.3 – Geoenergy, GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Related authors
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136, https://doi.org/10.5194/sand-2-135-2023, https://doi.org/10.5194/sand-2-135-2023, 2023
Short summary
Short summary
Crystalline rocks are being considered as potential host rocks in the ongoing search for a suitable site for a nuclear waste repository in Germany, where there is no existing experience in terms of excavating a repository in crystalline rocks. The planned underground laboratory GeoLaB addressing crystalline geothermal reservoirs offers unique opportunities for synergies with nuclear waste disposal research and development, especially in the exploration and building phases.
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Cited articles
Agemar, T., Alten, J.-A., Ganz, B., Kuder, J., Kühne, K., Schumacher, S., and Schulz, R.: The Geothermal Information System for Germany – GeotIS, Z. Dt. Ges. Geowiss., 165, 129–144, https://doi.org/10.1127/1860-1804/2014/0060, 2014.
Agemar, T., Hese, F., Moeck, I., and Stober, I.: Kriterienkatalog für die Erfassung tiefreichender Störungen und ihrer geothermischen Nutzbarkeit in Deutschland [List of criteria for the geothermal survey of deep-reaching faults in Germany.], Z. Dt. Ges. Geowiss., 168, 285–300, https://doi.org/10.1127/zdgg/2017/0084, 2017.
Agemar, T., Tribbensee, K., Görne, S., and Obst, K.: 3D-Modell geothermischer Nutzhorizonte Nordostdeutschlands in GeotIS [3D model of geothermal horizons located in northeastern Germany in GeotIS.], Z. Dt. Ges. Geowiss., 169, 343–351, https://doi.org/10.1127/zdgg/2018/0127, 2018.
Bär, K., Schäfer, R., Weinert, S., and Sass, I.: Verbundprojekt “Hessen 3D 2.0”: 3D-Modell der geothermischen Tiefenpotenziale von Hessen – Petrothermale Potenziale und Mitteltiefe Potenziale zur Wärmenutzung und Wärmespeicherung (Teilvorhaben A), Schlussbericht zum BMWi-geförderten Verbundprojekt “Hessen 3D 2.0” (FKZ 0325944A), 194 pp., Technical University of Darmstadt, 2021.
Bossennec, C., Seib, L., Krusemark, M., Weydt, L., Meinaß, H. P., Frey, M., Scheuvens, D., Hesse, K., Wonik, T., Buness, H., and Sass, I.: Characterisation of a complex faulted crystalline environment targeted for medium deep thermal energy storage, SKEWS MD-BTES demonstration site, Geothermal Energy, in press, 2025.
BGR: Warm-Up – Geothermie für die Wärmewende: Flankierung des Rollouts der mitteltiefen Geothermie in Deutschland, Bundesanstalt für Geologie und Rohstoffe, https://www.bgr.bund.de/DE/Themen/Nutzung_tieferer_Untergrund_CO2Speicherung/Projekte/Geothermie/Laufend/Warm-Up.html (last access: 28 June 2024), 2024.
DGMK: Projektstart: Geschlossene mitteltiefe Geothermiesysteme für die dezentrale Wärmeversorgung, Deutsche Wissenschaftliche Gesellschaft für nachhaltige Energieträger, Mobilität und Kohlenstoffkreisläufe e. V., https://dgmk.de/news/projektstart-geschlossene-mitteltiefe-geothermiesysteme-fuer-die-dezentrale-waermeversorgung/ (last access: 24 June 2024), 2023.
European Union: Luxembourg's integrated national energy and climate plan for 2021–2030, Report, Le Gouverment Du Grand-Duché De Luxembourg, 190 pp., https://energy.ec.europa.eu/system/files/2020-07/lu_final_necp_main_en_0.pdf (last access 24 June 2024), 2020.
Frey, M., Bär, K., Stober, I., Reinecker, J., van der Vaart, J., and Sass, I.: Assessment of Deep Geothermal Research and Development in the Upper Rhine Graben, Geothermal Energy, 10, 18, https://doi.org/10.1186/s40517-022-00226-2, 2022.
HLNUG: Mitteltiefe Geothermie, Hessisches Landesamt für Naturschutz, Umwelt und Geologie (HLNUG), https://www.hlnug.de/themen/geologie/erdwaerme-geothermie/mitteltiefe-geothermie (last access: 30 June 2024), 2023.
Jobmann, M. and Schulz, R.: Hydrogeothermische Energiebilanz und Grundwasserhaushalt des Malmkarstes im süddeutschen Molassebecken, Abschlussbericht, Band I, Archiv Nr. 105040, Niedersächsisches Landesamt für Bodenforschung, 1989.
LIAG: mesoTherm – Erkundung und Erschließung hydrothermaler Reservoire der mitteltiefen Geothermie – ein Beitrag zur Wärmewende in Norddeutschland, LIAG Institut für Angewandte Geophysik, https://www.leibniz-liag.de/forschung/projekte/drittmittelprojekte/mesotherm.html (last access: 24 June 2024), 2024.
Mantei, N., Rioseco, E. M., and Moeck, I. S.: 3D numerical study of geothermal reservoir performance of homogeneous sectors of Mesozoic sandstone formations in the North German Basin developed by smart multi-well systems, Geothermal Energy, 81 pp. [preprint], https://doi.org/10.21203/rs.3.rs-4808466/v1, 2024.
Moeck, I.: Catalog of geothermal play types based on geologic controls, Renew. Sust. Energ. Rev., 37, 867–882, https://doi.org/10.1016/j.rser.2014.05.032, 2014.
Moeck, I., Dussel, M., Weber, J., Schintgen, T., and Wolfgramm, M.: Geothermal play typing in Germany, case study Molasse Basin: A modern concept to categorise geothermal resources related to crustal permeability, Neth. J. Geosci., 98, E14, https://doi.org/10.1017/njg.2019.12, 2019.
Muffler, P. and Cataldi, R.: Methods for regional assessment of geothermal resources, Geothermics, 7, 53–89, 1978.
Niebuhr, B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F., and Wilmsen, M.: Lithostratigraphie der norddeutschen Oberkreide, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 55, 136 pp., ISBN 978-3-510-49202-2, https://www.schweizerbart.de/publications/detail/artno/171905500 (last access: 20 March 2025), 2007.
Sass, I.: Mitteltiefe Geothermie – Standortanforderungen, Technik und Praxisbeispiele, Fachgespräch Erdwärmenutzung in Hessen, 17.09.2013, Idstein, Germany, https://www.google.com/url?sa=t&source=web&rct=j&opi= 89978449&url=https://www.hlnug.de/fileadmin/dokumente/ geologie/erdwaerme/fachgespraech/2013/Fachgespraech_Erd waerme_2013_Sass.pdf&ved=2ahUKEwil3dGy1Z2MAxURA IHHQ5nFUYQFnoECA8QAQ&usg=AOvVaw0ou-y4N85PrK_pNNX0WNP9 (last access: 20 March 2025), 2013.
Sass, I., Krusemark, M., Seib, L., Bossennec, C., Pham, T. H., Schedel, M., Weydt, L., Buness, H., and Homuth, B.: Medium-Deep Borehole Thermal Energy Storage (MD-BTES): from Exploration to District-Heating Grid Connection, Insights from SKEWS and PUSH-IT Projects, Proceedings 49th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, USA, 12–14 February 2024, SGP-TR-227, 12 pp., https://www.google.com/url?sa=t&source=web&rct=j&opi= 89978449&url=https://pangea.stanford.edu/ERE/db/GeoConf/ papers/SGW/2024/Sass.pdf&ved=2ahUKEwiUwOH01Z2MAx W4ygIHHZUKKUUQFnoECA8QAQ&usg=AOvVaw2XUgOm S5ZjEdtqQMnOhz-u (last access: 20 March 2025), 2024.
Seib, L., Frey, M., Bossennec, C., Krusemark, M., Burschill, T., Buness, H., Weydt, L., and Sass, I.: Assessment of a medium-deep borehole thermal energy storage site in the crystalline basement: A case study of the demo site Lichtwiese Campus, Darmstadt, Geothermics, 119, 102933, https://doi.org/10.1016/j.geothermics.2024.102933, 2024.
Stadt Schwerin: Geothermie in Schwerin – ein Meilenstein in der Wärmewende: Deutschlandweit erste mitteltiefe Geothermie-Anlage mit Wärmepumpen geht in Betrieb, https://www.schwerin.de/news/geothermie-geht-in-betrieb/ (last access: 24 June 2024), 2023.
Stober, I. and Bucher, K.: Geothermal Energy – From Theoretical Models to Exploration and Development, 2nd edn., Springer, Cham, Switzerland, 390 pp., https://doi.org/10.1007/978-3-030-71685-1, 2021.
Umweltbundesamt: Energieverbrauch für fossile und erneuerbare Wärme, Umweltbundesamt, https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme (last access: 29 June 2024), 2024.
van der Vaart, J., Bär, K., Frey, M., Reinecker, J., and Sass, I.: Quantifying model uncertainty of a geothermal 3D model of the Cenozoic deposits in the northern Upper Rhine Graben, Germany, Z. Dt. Ges. Geowiss., 172, 365–379, https://doi.org/10.1127/zdgg/2021/0286, 2021.
Weber, J. and Moeck, I.: Heat transition with geothermal energy – chances and opportunities in Germany, brochure, Leibniz Institute for Applied Geophysics, Hannover, 12 pp., https://www.geotis.de/homepage/sitecontent/info/publication_data/public_relations/public_relations_data/Liag-Brosch-waermewende-eng.pdf (last access: 24 June 2024), 2019.
Weydt, L., Agemar, T., Bär, K., Erb, M., Dobrzinski, N., Mantei, N., Moeck, I., Singh, M., Sperlich, S., van der Vaart, J., Weber, J., and Sass, I.: Assessment for medium-depth geothermal energy utilization in Germany – first results from the ArtemIS project, Proceedings Geothermal Rising, 1–4 October 2023, Reno, Nevada, USA, GRC Transactions, Vol. 47, 11 pp., ISBN 9781713884002, https://www.proceedings.com/71719.html (last access: 20 March 2025), 2023.
Short summary
To accelerate the heat transition in Germany the ArtemIS project focuses on the geothermal assessment of medium-depth reservoirs on a region-wide basis, covering all geological play types based on structural and numerical reservoir models. The results are incorporated into the GeotIS internet platform to create interactive “heat transition profiles”, which provide all necessary technical and subsurface data for each play type to perform preliminary geothermal assessment studies.
To accelerate the heat transition in Germany the ArtemIS project focuses on the geothermal...