Impact of climate change on high wind and solar optimal mixes and system costs: the case of France
Joan Delort Ylla
CORRESPONDING AUTHOR
Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, École Polytechnique, IP Paris, Sorbonne Université, ENS, PSL University, CNRS, 91120, Palaiseau, France
Alexis Tantet
Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, École Polytechnique, IP Paris, Sorbonne Université, ENS, PSL University, CNRS, 91120, Palaiseau, France
Philippe Drobinski
Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, École Polytechnique, IP Paris, Sorbonne Université, ENS, PSL University, CNRS, 91120, Palaiseau, France
Related authors
No articles found.
Lia Rapella, Tommaso Alberti, Davide Faranda, and Philippe Drobinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-1219, https://doi.org/10.5194/egusphere-2025-1219, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Extreme weather events pose increasing challenges for aviation, including flight disruptions and infrastructure damage. This study examines the influence of anthropogenic climate change on four recent major storms across Europe, the USA, and East Asia. Our research underscores the growing intensity of extreme storms, driven by human-induced climate change, underscoring the need to adapt aviation strategies to an increasingly hazardous environment.
Douglas Keller Jr., Yonatan Givon, Romain Pennel, Shira Raveh-Rubin, and Philippe Drobinski
Ocean Sci., 18, 483–510, https://doi.org/10.5194/os-18-483-2022, https://doi.org/10.5194/os-18-483-2022, 2022
Short summary
Short summary
The mistral winds are believed to be the primary source of cooling of the Gulf of Lion, leading to deep convection in the region, a process that mixes the ocean column from the seafloor to the sea surface. However, we have found that seasonal atmospheric changes also significantly cool the Gulf of Lion waters to cause deep convection, rather than mistral winds being the sole source, contributing roughly two-thirds of the required cooling, with the mistral winds contributing the final third.
Cited articles
Bloomfield, H. C., Brayshaw, D. J., Shaffrey, L. C., Coker, P. J., and Thornton, H. E.: Quantifying the increasing sensitivity of power systems to climate variability, Environ. Res. Lett., 11, 124025, https://doi.org/10.1088/1748-9326/11/12/124025, 2016. a
Bloomfield, H. C., Brayshaw, D. J., Troccoli, A., Goodess, C. M., De Felice, M., Dubus, L., Bett, P. E., and Saint-Drenan, Y. M.: Quantifying the sensitivity of european power systems to energy scenarios and climate change projections, Renewable Energy, 164, 1062–1075, https://doi.org/10.1016/j.renene.2020.09.125, 2021. a
Brown, T., Hörsch, J., and Schlachtberger, D.: PyPSA: Python for Power System Analysis, J. Open Res. Softw., 6, 4, https://doi.org/10.5334/jors.188, 2018. a
Cai, Y. and Bréon, F.-M.: Wind power potential and intermittency issues in the context of climate change, Energ. Convers. Manage., 240, 114276, https://doi.org/10.1016/j.enconman.2021.114276, 2021. a
Ciscar, J.-C. and Dowling, P.: Integrated assessment of climate impacts and adaptation in the energy sector, Energy Economics, 46, 531–538, https://doi.org/10.1016/j.eneco.2014.07.003, 2014. a
Coppola, E., Nogherotto, R., Ciarlo', J. M., Giorgi, F., van Meijgaard, E., Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P., Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J., Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen, O. B., Boberg, F., Sørland, S. L., Demory, M.-E., Bülow, K., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032356, https://doi.org/10.1029/2019JD032356, 2021. a
Craig, M. T., Cohen, S., Macknick, J., Draxl, C., Guerra, O. J., Sengupta, M., Haupt, S. E., Hodge, B.-M., and Brancucci, C.: A review of the potential impacts of climate change on bulk power system planning and operations in the United States, Renewable and Sustainable Energy Reviews, 98, 255–267, https://doi.org/10.1016/j.rser.2018.09.022, 2018. a, b
Craig, M. T., Carreño, I. L., Rossol, M., Hodge, B.-M., and Brancucci, C.: Effects on power system operations of potential changes in wind and solar generation potential under climate change, Environ. Res. Lett., 14, 034014, https://doi.org/10.1088/1748-9326/aaf93b, 2019. a
Dupré, A.: Sizing of a short term wind forecasting system, Ph.D. thesis, Institut Polytechnique de Paris, https://theses.hal.science/tel-02513065 (last access: 7 December 2023), 2020. a
Gutiérrez, C., Somot, S., Nabat, P., Mallet, M., Corre, L., Meijgaard, E. V., Perpiñán, O., and Gaertner, M. A.: Future evolution of surface solar radiation and photovoltaic potential in Europe: investigating the role of aerosols, Environ. Res. Lett., 15, 034035, https://doi.org/10.1088/1748-9326/ab6666, 2020. a, b
Heide, D., von Bremen, L., Greiner, M., Hoffmann, C., Speckmann, M., and Bofinger, S.: Seasonal optimal mix of wind and solar power in a future, highly renewable Europe, Renewable Energy, 35, 2483–2489, https://doi.org/10.1016/j.renene.2010.03.012, 2010. a
Heptonstall, P. J. and Gross, R. J. K.: A systematic review of the costs and impacts of integrating variable renewables into power grids, Nature Energy, 6, 72–83, https://doi.org/10.1038/s41560-020-00695-4, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a
Jaglom, W. S., McFarland, J. R., Colley, M. F., Mack, C. B., Venkatesh, B., Miller, R. L., Haydel, J., Schultz, P. A., Perkins, B., Casola, J. H., Martinich, J. A., Cross, P., Kolian, M. J., and Kayin, S.: Assessment of projected temperature impacts from climate change on the U.S. electric power sector using the Integrated Planning Model, Energy Policy, 73, 524–539, https://doi.org/10.1016/j.enpol.2014.04.032, 2014. a, b
Khan, Z., Iyer, G., Patel, P., Kim, S., Hejazi, M., Burleyson, C., and Wise, M.: Impacts of long-term temperature change and variability on electricity investments, Nat. Commun., 12, 1643, https://doi.org/10.1038/s41467-021-21785-1, 2021. a, b
Kozarcanin, S., Liu, H., and Andresen, G. B.: 21st Century Climate Change Impacts on Key Properties of a Large-Scale Renewable-Based Electricity System, Joule, 3, 992–1005, https://doi.org/10.1016/j.joule.2019.02.001, 2019. a
Lavaysse, C., Vrac, M., Drobinski, P., Lengaigne, M., and Vischel, T.: Statistical downscaling of the French Mediterranean climate: assessment for present and projection in an anthropogenic scenario, Nat. Hazards Earth Syst. Sci., 12, 651–670, https://doi.org/10.5194/nhess-12-651-2012, 2012. a
McFarland, J., Zhou, Y., Clarke, L., Sullivan, P., Colman, J., Jaglom, W. S., Colley, M., Patel, P., Eom, J., Kim, S. H., Kyle, G. P., Schultz, P., Venkatesh, B., Haydel, J., Mack, C., and Creason, J.: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison, Clim. Change, 131, 111–125, https://doi.org/10.1007/s10584-015-1380-8, 2015. a, b
Miara, A., Cohen, S. M., Macknick, J., Vörösmarty, C. J., Corsi, F., Sun, Y., Tidwell, V. C., Newmark, R., and Fekete, B. M.: Climate-Water Adaptation for Future US Electricity Infrastructure, Environ. Sci. Technol., 53, 14029–14040, https://doi.org/10.1021/acs.est.9b03037, 2019. a
Michelangeli, P.-A., Vrac, M., and Loukos, H.: Probabilistic downscaling approaches: Application to wind cumulative distribution functions, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL038401, 2009. a
Mima, S. and Criqui, P.: The Costs of Climate Change for the European Energy System, an Assessment with the POLES Model, Environ. Model. A., 20, 303–319, https://doi.org/10.1007/s10666-015-9449-3, 2015. a
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010. a
Peter, J.: How does climate change affect electricity system planning and optimal allocation of variable renewable energy?, Appl. Energy, 252, 113397, https://doi.org/10.1016/j.apenergy.2019.113397, 2019. a
Pfenninger, S.: Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability, Appl. Energy, 197, 1–13, https://doi.org/10.1016/j.apenergy.2017.03.051, 2017. a, b
Pfenninger, S. and Pickering, B.: Calliope: a multi-scale energy systems modelling framework, J. Open Source Softw., 3, 825, https://doi.org/10.21105/joss.00825, 2018. a
Prina, M. G., Manzolini, G., Moser, D., Nastasi, B., and Sparber, W.: Classification and challenges of bottom-up energy system models - A review, Renewable and Sustainable Energy Reviews, 129, 109917, https://doi.org/10.1016/j.rser.2020.109917, 2020. a
Ralston Fonseca, F., Craig, M., Jaramillo, P., Bergés, M., Severnini, E., Loew, A., Zhai, H., Cheng, Y., Nijssen, B., Voisin, N., and Yearsley, J.: Effects of Climate Change on Capacity Expansion Decisions of an Electricity Generation Fleet in the Southeast U.S., Environ. Sci. Technol., 55, 2522–2531, https://doi.org/10.1021/acs.est.0c06547, 2021a. a, b, c, d
Ralston Fonseca, F., Craig, M., Jaramillo, P., Bergés, M., Severnini, E., Loew, A., Zhai, H., Cheng, Y., Nijssen, B., Voisin, N., and Yearsley, J.: Climate-Induced Tradeoffs in Planning and Operating Costs of a Regional Electricity System, Environ. Sci. Technol., 55, 11204–11215, https://doi.org/10.1021/acs.est.1c01334, 2021b. a
Ringkjøb, H.-K., Haugan, P. M., and Solbrekke, I. M.: A review of modelling tools for energy and electricity systems with large shares of variable renewables, Renewable and Sustainable Energy Reviews, 96, 440–459, https://doi.org/10.1016/j.rser.2018.08.002, 2018. a
Schlott, M., Kies, A., Brown, T., Schramm, S., and Greiner, M.: The impact of climate change on a cost-optimal highly renewable European electricity network, Appl. Energy, 230, 1645–1659, https://doi.org/10.1016/j.apenergy.2018.09.084, 2018. a, b, c, d
Sijm, J.: Cost and revenue related impacts of integrating electricity from variable renewable energy into the power system – A review of recent literature, Tech. Rep. ECN-E–14-022, http://resolver.tudelft.nl/uuid:da69fee6-6c0b-47b9-b0a5-bb57db557d17 (last access: 26 January 2025), 2014. a
Staffell, I. and Pfenninger, S.: The increasing impact of weather on electricity supply and demand, Energy, 145, 65–78, https://doi.org/10.1016/j.energy.2017.12.051, 2018. a
Tantet, A. and Drobinski, P.: A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis, Energies, 14, 5143, https://doi.org/10.3390/en14165143, 2021. a, b
Tantet, A., Stéfanon, M., Drobinski, P., Badosa, J., Concettini, S., Cretì, A., D’Ambrosio, C., Thomopulos, D., and Tankov, P.: e4clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy, Energies, 12, 4299, https://doi.org/10.3390/en12224299, 2019. a, b, c, d
Tobin, I., Greuell, W., Jerez, S., Ludwig, F., Vautard, R., Vliet, M. T. H. V., and Bréon, F.-M.: Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming, Environ. Res. Lett., 13, 044024, https://doi.org/10.1088/1748-9326/aab211, 2018. a
Turner, S. W. D., Voisin, N., Fazio, J., Hua, D., and Jourabchi, M.: Compound climate events transform electrical power shortfall risk in the Pacific Northwest, Nat. Commun., 10, 8, https://doi.org/10.1038/s41467-018-07894-4, 2019. a
van der Wiel, K., Stoop, L. P., van Zuijlen, B. R. H., Blackport, R., van den Broek, M. A., and Selten, F. M.: Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall, Renewable and Sustainable Energy Reviews, 111, 261–275, https://doi.org/10.1016/j.rser.2019.04.065, 2019. a
van Vliet, M. T. H., Wiberg, D., Leduc, S., and Riahi, K.: Power-generation system vulnerability and adaptation to changes in climate and water resources, Nat. Clim. Change, 6, 375–380, https://doi.org/10.1038/nclimate2903, 2016. a
Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and Somot, S.: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784, https://doi.org/10.5194/nhess-12-2769-2012, 2012. a
Wohland, J.: Process-based climate change assessment for European winds using EURO-CORDEX and global models, Environ. Res. Lett., 17, 124047, https://doi.org/10.1088/1748-9326/aca77f, 2022. a, b
Yalew, S. G., van Vliet, M. T. H., Gernaat, D. E. H. J., Ludwig, F., Miara, A., Park, C., Byers, E., De Cian, E., Piontek, F., Iyer, G., Mouratiadou, I., Glynn, J., Hejazi, M., Dessens, O., Rochedo, P., Pietzcker, R., Schaeffer, R., Fujimori, S., Dasgupta, S., Mima, S., da Silva, S. R. S., Chaturvedi, V., Vautard, R., and van Vuuren, D. P.: Impacts of climate change on energy systems in global and regional scenarios, Nature Energy, 5, 794–802, https://doi.org/10.1038/s41560-020-0664-z, 2020. a, b
Zeyringer, M., Price, J., Fais, B., Li, P.-H., and Sharp, E.: Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather, Nature Energy, 3, 395–403, https://doi.org/10.1038/s41560-018-0128-x, 2018. a
Short summary
Understanding how the electricity generation sector reacts to climate change while large shares of wind and solar energies are introduced is of crucial importance to ensure a clean, secure and affordable electricity provision. We find that in a best case scenario, if we account only for climate change impacts on the wind and solar resource coupled to the demand, then climate change tends to have no adverse economic impacts, while it becomes more interesting to invest in solar than wind energy.
Understanding how the electricity generation sector reacts to climate change while large shares...